Technical description of solution usnd04it 1. Purpose of the solution: a) obtain baseline length series for ITRF 2004 project; b) provide intermediary information, such as decomposed normal matrix, covariance matrix, for individuals who are combining different space geodesy techniques. 2. Analysis center: USN ( U.S. Naval Observatory ) 3. Short narrative description of solution: Solution usnd04it estimates position of all stations, coordinates of some unstable sources, UT1, polar motion and their rates, daily nutation offsets for each session independently. No-net-rotation, no-net-translation constraints are imposed on the estimates of the station positions. All available dual-band Mark-3/Mark-4 VLBI observations from 01-JAN-1996 through 23-MAY-2002, 3271 diurnal multi-baseline sessions, and 3,978,608 measurements of group delay, were used in this solution. NB: although UT1 and pole coordinates are adjusted in the solution, these estimates should not be used in scientific analysis, since they heavily depend on apriori EOP values. Mean site gradients were computed from the GSFC Data Assimilation Office (DAO) model from met data from 1990-95. The atmospheric gradient delay is modeled as tau = m_grad(el) * [GN*cos(az)+GE*sin(az)], where el and az are the elevation and azimuth of the observation and the gradient mapping function is m_grad. The gradient vector has east and north components GE and GN. Refer to [2] and [3]. 4. Estimated parameters: a. celestial frame: right ascension, declination (global and local) b. terrestrial frame: X, Y, Z of all sites for each 24 hour session independently. c. Earth orientation: x, y, UT1-UTC, UT1dot, dpsi, deps d. zenith troposphere: linear spline 20-min interval; rate constraint with reciprocal weights generally 50 ps/hr; NMF wet partial derivative (segmented). e. troposphere gradient: east and north gradients as well of the rate of their change was estimated for all stations offset and rate constraints with reciprocal weights 0.5 mm and 2.0 mm/day were applied (local). f. station clocks: quadratic (local) + linear spline with 1-hr interval (segmented); rate constraint with reciprocal weights generally 5.0E-14 g. baseline clocks: set in initial analysis - usually used h. other: global antenna axis offsets for 61 stations 5. Celestial reference frame: a. a priori source positions: ICRF b. source positions adjusted in solution: yes, some If yes, c. definition of orientation: no-net-rotation tie to the ICRF using only ICRF defining sources d. source position estimation: 135 local 6. Terrestrial reference frame: a. a priori station positions: ITRF2000 b. a priori station velocities: ITRF2000 c. reference epoch for site positions: 1997.0 d. station positions/velocities adjusted in solution: yes, positions only e. definition of origin, orientation, and their time evolution: no-net-translation and no-net-rotation of position with respect to ITRF2000. f. station parameter estimation: X, Y, Z, locally for all stations g. stations with constraints: no h. stations with discontinuous positions and date of discontinuity: no i. stations with nonlinear velocities: no j. relativity scale: the terrestrial reference frame is defined using the following metric tensor: G_oo = -(1 - (2W/c^2 + W^2/c^4) + 2L_g ) G_oa = -4W^a/c^3 G_ab = \delta_ab (1 + 2W/c^2 - 2L_g) ) Specifically, the old formula 29 in IERS Conventions 1992, page 127-136. k. permanent tide correction: yes "Yes" means that both the permanent and the periodic tides have been modeled, so that the output station position is for after the removal of both the permanent and the periodic tidal effect. The model used includes tide displacements for zero frequency with Love numbers h2(freq=0) = 0.6074, l2(freq=0) = 0.0852 7. Earth orientation: a. a priori precession model: IERS 1996 b. a priori nutation model: IERS 1996 c. a priori short-period tidal variations in x, y, UT1 were taken into account in accordance with the model presented in APPENDIX A. d. EOP estimation: X, Y, UT1, Xdot, Ydot, UT1dot, deps, dpsi each day with a priori error of 45 mas for pole and 3 ms for UT1, 45 mas/day and 3 ms/day for pole rate and UT1 rate to allow estimation for one-baseline sessions; deps and dpsi are relative to IAU 1976 precession and IAU 1980 nutation models. Time tag of EOP series is the middle epoch of the observing session. 8. A priori geophysical models: a. troposphere: NMF dry mapping function; Saastamoinen zenith delay calculated using logged pressure, temperature; a priori mean gradients from DAO weather model. b. solid Earth tide: IERS Conventions 1996, p.56-65, step 1 and step 2, anelasticity variant, including tides of the 3-rd order. c. ocean loading: 3D ocean loading displacements computed by SPOTL software. The model of displacements caused by ocean loading contains 28 constituents. The following ocean tide models were used: Harmonic Phase rad Frequency rad/sec Model Comment k2-a 1.324501D+00 1.458530140651D-04 GOT00 admittance k2 3.506941D+00 1.458423171028D-04 GOT00 s2 6.283185D+00 1.454441043329D-04 GOT00 s2-a 4.312500D-02 1.452450074576D-04 GOT00 admittance m2 2.169437D+00 1.405189027044D-04 GOT00 m2-a 1.210284D+00 1.405082057420D-04 GOT00 admittance n2 6.097067D+00 1.378796996516D-04 GOT00 k1-a 1.141827D+00 7.293185551375D-05 GOT00 admittance k1 3.324267D+00 7.292115855138D-05 GOT00 k1-b 2.365113D+00 7.291046158901D-05 GOT00 admittance p1 2.958919D+00 7.252294578148D-05 GOT00 p1-a 3.002044D+00 7.232384890619D-05 GOT00 admittance o1 5.128356D+00 6.759774415297D-05 GOT00 o1-a 1.027610D+00 6.758704719061D-05 GOT00 admittance q1 2.772800D+00 6.495854110023D-05 GOT00 q1-a 4.955240D+00 6.494784413786D-05 GOT00 admittance mtm-a 4.652212D+00 7.973314413516D-06 NAO99.l admittance mtm 5.514660D-01 7.962617451151D-06 NAO99.l mf-a 2.296657D+00 5.334111360775D-06 NAO99.l admittance mf 4.479096D+00 5.323414398410D-06 NAO99.l msf 9.721550D-01 4.925201628510D-06 NAO99.l mm 5.497148D+00 2.639203052741D-06 NAO99.l msm 4.899785D+00 2.285998575769D-06 NAO99.l ssa 3.653480D-01 3.982127698995D-07 NAO99.l paw 5.012885D+00 1.991063797295D-07 equilibrium sa 3.098467D+00 1.990968752920D-07 NAO99.l pcw 2.003605D+00 1.671771314171D-07 equilibrium 18.6 4.100746D+00 1.069696236521D-08 equilibrium d. atmosphere loading: none! 9. Data type: group delays 10. Data editing: 6 deg elevation cutoff 11. Data weighting. Weights are defined as follows: 1/sqrt ( f**2 + a**2 ) where "f" is formal uncertainty of the ionosphere free linear combination of group delays at X- and S-band obtained by fringe fitting on the base of achieved signal to noise ratio. The station-dependent parameter "a" was computed for each session by an iterative procedure such that the ratio of the sum of squares of weighted residuals to the estimate of their mathematical expectation is about unity. 12. Standard errors reported: all errors derived from least-squares estimation propagated from the data weights and the constraints applied to the estimated parameters. 13. Software: Calc 9.12, SOLVE release: 2004.10.25 14. Other information: Mean pole coordinates used for computation of pole tide deformation were set to 0.0, 0.0 References: 1. COORDINATES OF THE DEFINING SOURCES IN ICRF http://hpiers.obspm.fr/webiers/results/icrf/icrfdef.html 2. MacMillan, D.S. and C. Ma, Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Lett., 22, 1041-1044, 1995. 3. MacMillan, D.S. and C. Ma, Atmospheric gradients and the VLBI terrestrial and celestial reference frames, Geophys. Res. Lett., 24, 453-456, 1997. ---------------------------------------------------------------------------- APPENDIX A ----------- Expansion of short-period variations in polar motion and UT1. UT1 tidal terms (microseconds) l l' F D Om GST | Cos | Sin | +pi | | | ----------------------------------------- 2 0 2 0 2 -1 -.13 -1.24 0 0 2 2 2 -1 .19 -.82 1 0 2 0 1 -1 -.50 -.92 1 0 2 0 2 -1 -2.64 -4.90 -1 0 2 2 2 -1 -1.10 -.77 0 0 2 0 1 -1 -2.51 -3.34 0 0 2 0 2 -1 -13.31 -17.72 -1 0 2 0 2 -1 .34 .63 1 0 0 0 0 -1 .48 .77 0 1 2 -2 2 -1 -.21 -.43 0 0 2 -2 2 -1 -3.20 -5.32 0 1 0 0 0 -1 .50 1.89 0 0 0 0 -1 -1 -.19 -.33 0 0 0 0 0 -1 9.83 16.45 0 0 0 0 1 -1 1.33 2.23 0 -1 0 0 0 -1 -.17 .41 0 0 -2 2 -2 -1 .08 -.04 -1 0 0 0 0 -1 .13 1.25 0 0 -2 0 -2 -1 .68 .33 0 0 -2 0 -1 -1 .44 .21 -1 0 -2 0 -2 -1 .18 .75 -1 0 -2 0 -1 -1 .12 .48 2 0 2 0 2 -2 -.30 .61 0 0 2 2 2 -2 -.83 .47 1 0 2 0 2 -2 -1.94 3.13 -1 0 2 2 2 -2 -.19 .67 0 0 2 0 1 -2 .37 -.57 0 0 2 0 2 -2 -9.88 15.37 -1 0 2 0 2 -2 .12 -.34 0 1 2 -2 2 -2 -.06 .17 0 0 2 -2 2 -2 -1.25 7.73 0 1 0 0 0 -2 .24 .27 0 0 0 0 0 -2 .28 2.48 0 0 0 0 1 -2 .08 .74 0 0 3 0 3 -3 .24 .03 0 0 0 4 1 -1 .26 .10 1 0 4 -2 2 -1 .43 -.52 0 0 0 1 0 -1 -.29 -.23 3 -1 2 0 2 -2 .14 .00 1 1 2 0 1 -2 -.26 -.40 0 0 0 -2 2 -2 .23 .09 ----------------------------------------- Polar motion tidal terms (microarcseconds) l l' F D Om GST | Cos | Sin | +pi | | | ----------------------------------------- -2 0 -2 0 -2 1 -6.90 5.52 0 0 -2 -2 -2 1 -8.63 3.00 -1 0 -2 0 -1 1 -5.58 1.48 -1 0 -2 0 -2 1 -29.56 7.83 1 0 -2 -2 -2 1 -7.86 3.64 0 0 -2 0 -1 1 -25.03 8.53 0 0 -2 0 -2 1 -132.70 45.21 1 0 -2 0 -2 1 2.59 .60 -1 0 0 0 0 1 3.26 -8.76 0 -1 -2 2 -2 1 1.25 9.68 0 0 -2 2 -2 1 -49.40 19.23 0 -1 0 0 0 1 25.06 6.71 0 0 0 0 1 1 -3.09 1.76 0 0 0 0 0 1 156.21 -88.75 0 0 0 0 -1 1 21.18 -12.04 0 1 0 0 0 1 4.99 .50 0 0 2 -2 2 1 3.25 2.62 1 0 0 0 0 1 .51 -4.99 0 0 2 0 2 1 5.93 -10.38 0 0 2 0 1 1 3.80 -6.65 1 0 2 0 2 1 .46 .59 1 0 2 0 1 1 .30 .37 -2 0 -2 0 -2 2 4.13 -.28 0 0 -2 -2 -2 2 -1.37 .40 -1 0 -2 0 -2 2 10.48 -12.69 1 0 -2 -2 -2 2 4.33 1.81 0 0 -2 0 -1 2 -1.06 2.12 0 0 -2 0 -2 2 28.34 -56.83 1 0 -2 0 -2 2 1.92 .54 0 -1 -2 2 -2 2 5.42 -4.28 0 0 -2 2 -2 2 -.48 -20.16 0 -1 0 0 0 2 2.61 1.85 0 0 0 0 0 2 -.83 -18.26 0 0 0 0 -1 2 -.25 -5.44 0 0 -3 0 -3 3 1.92 -1.16 0 0 0 -4 -1 1 5.23 -1.47 -1 0 -4 2 -2 1 -1.28 -3.62 0 0 0 -1 0 1 2.33 -2.61 -3 1 -2 0 -2 2 -.88 -1.13 -1 -1 -2 0 -1 2 .24 .00 0 0 0 2 -2 2 .05 -1.31 2 0 2 0 2 -2 2.33 7.19 0 0 2 2 2 -2 2.87 7.66 1 0 2 0 2 -2 .59 43.62 -1 0 2 2 2 -2 -3.07 8.30 0 0 2 0 1 -2 .50 -9.59 0 0 2 0 2 -2 -13.37 257.07 -1 0 2 0 2 -2 1.83 -7.67 0 1 2 -2 2 -2 -7.08 .33 0 0 2 -2 2 -2 -72.53 106.95 0 1 0 0 0 -2 .34 -4.29 0 0 0 0 0 -2 -18.74 12.64 0 0 0 0 1 -2 -5.59 3.77 0 0 3 0 3 -3 -.56 -1.57 3 -1 2 0 2 -2 -.98 4.60 1 1 2 0 1 -2 -.62 4.28 0 0 0 -2 2 -2 -.83 2.72 -----------------------------------------