>>> SOLUTION DESCRIPTION <<< #################### Technical description of solution gsfd0002 1. Purpose of the solution: a) obtain baseline length series; b) provide intermediary information, such as covariance matrix, matrix of constraints equation, decomposed normal matrix, for individuals who are investigating in study of a feasibility and usefulness of attempts to combine solutions from different space geodesy techniques. PARAMETERS FROM THESE SOLUTION CANNOT BE USED DIRECTLY. THEY REQUIRE A SOPHISTICATED PROCEDURE OF POST-SOLUTION ANALYSIS. NB: 1) DO NOT ATTEMPT TO INTERPRET RESULTS OF THIS SOLUTION AS VLBI SITE POSITION TIMES SERIES!! 2) ALTHOUGH UT1 AND POLE COORDINATES ARE ADJUSTED IN THIS SOLUTION, THESE ESTIMATES SHOULD NOT BE DIRECTLY USED IN SCIENTIFIC ANALYSIS, SINCE THEY HEAVILY DEPEND ON APRIORI EOP VALUES. YOU ARE WARNED! 2. Analysis center: GSF ( NASA Goddard Space Flight Center ) 3. Short narrative description of solution: Solution gsfd0002 estimates position of all stations, coordinates of some unstable sources, UT1, polar motion and their rates, daily nutation offsets for each session independently. No-net-rotation, no-net-translation constraints are imposed on the estimates of the station positions. Clock function for all stations except the reference one and atmosphere zenith path delay are modeled by a linear spline with the time span 60 and 20 minutes respectively. Parameters of these spline are estimated as well together with other parameters. Mean site gradients were computed from the GSFC Data Assimilation Office (DAO) model from met data from 1990-95. The atmospheric gradient delay is modeled as tau = m_grad(el) * [GN*cos(az)+GE*sin(az)], where el and az are the elevation and azimuth of the observation and the gradient mapping function is m_grad. The gradient vector has east and north components GE and GN. Refer to [2] and [3]. 4. Estimated parameters: a. celestial frame: right ascension, declination of 218 sources for each 24 hour session independently. These are rarely observed sources. b. terrestrial frame: X, Y, Z of all sites for each 24 hour session independently. c. Earth orientation: x, y, UT1-TAI, xdot, ydot, UT1dot, dpsi, deps. d. zenith troposphere: linear spline 20-min interval; rate constraint with reciprocal weights generally 50 ps/hr; NMF wet partial derivative (segmented). e. troposphere gradient: east and north gradients as well of the rate of their change was estimated for all stations offset and rate constraints with reciprocal weights 0.5 mm and 2.0 mm/day were applied (local). f. station clocks: quadratic (local) + linear spline with 1-hr interval (segmented); rate constraint with reciprocal weights generally 5.0E-14 g. baseline clocks: set in initial analysis - usually used (local) 5. Celestial reference frame: a. a priori source positions: 2004b_apr.src catalogue. This catalogue was created in the preliminary solution similar to gsf2004b. However, positions of 212 ICRF defining sources were replaced with the values taken from the ICRF catalogue. b. coordinates of a small set of sources are estimated in this solution. c. definition of orientation: the list of 212 ICRF defining sources. d. source position estimation: 218 sources. 6 - Terrestrial reference frame: a. a priori station positions: 2004b_apr.sit . This catalogue was created in the preliminary solution similar to gsf2004b. However, positions of 35 strong stations were replaced with the values from the ITRF2000 catalogue. b. a priori station velocities: 2004b_apr.vel . This catalogue was created in the preliminary solution similar to gsf2004b. However, velocities of 35 strong stations were replaced with the values from the ITRF2000 catalogue. c. reference epoch for site positions: weighed middle epoch of the experiment. d. station positions/velocities adjusted in solution: yes e. definition of origin, orientation, and their time evolution: net-translation and net-rotation of position with respect to apriori positions. f. station parameter estimation: X, Y, Z for all stations. g. stations with constraints: none h. stations with discontinuous positions and date of discontinuity: not applicable The eccentricity vector for station TSUKUB32 was assigned to (-0.0437, 0.0, 0.0) meters in Up, East, North in local topocentric reference frame before 1999.05.01 and (0.0, 0.0, 0.0) after 1999.05.01 according to results of geodetic surveys [4]. Changes in the eccentricity vector are caused by repairing of the concrete foundation slab. i. stations with nonlinear velocities: not applicable j. relativity scale: the terrestrial reference frame is defined using the following metric tensor: G_oo = -(1 - (2W/c^2 + W^2/c^4) + 2L_g ) G_oa = -4W^a/c^3 G_ab = \delta_ab (1 + 2W/c^2 - 2L_g) ) Specifically, the old formula 29 in IERS Conventions 1992, page 127-136 was used, although it is known to have a deficiency. THIS METRIC TENSOR DOES NOT CONFORM IAU 2000 RESOLUTIONS! k. permanent tide correction: yes "Yes" means that both the permanent and the periodic tides have been included in the model, so that the output station position is for after the removal of both the permanent and the periodic tidal effect. The model used includes tide displacements for zero frequency with Love numbers h2(freq=0) = 0.6074, l2(freq=0) = 0.0852 7. Earth orientation: a. a priori precession model: IERS 1996 b. a priori nutation model: IERS 1996 c. a priori short-period tidal variations in x, y, UT1 were taken into account in accordance with the model presented in Appendix G. d. EOP estimation: X, Y, UT1, Xdot, Ydot, UT1dot, deps, dpsi each day with a priori error of 45 mas for pole and 3 ms for UT1, 45 mas/day and 3 ms/day for pole rate and UT1 rate to allow estimation for one-baseline sessions; deps and dpsi are relative to IAU 1976 precession and IAU 1980 nutation models. Time tag of EOP series is the middle epoch of the observing session. The model of high frequency variations in polar motion and UT1 specified in the Appendix G was added to the apriori EOP during data reduction. The reported values of polar motion and UT1 are the sum of the adjustments and the apriori EOP without contribution due to the high frequency variations. Thus, the final estimates of polar motion and UT1 do not contain contributions due to the high frequency variations. 8. A priori geophysical models: a. troposphere: NMF dry mapping function; Saastamoinen zenith delay calculated using logged pressure, temperature; a priori mean gradients from DAO weather model. b. solid Earth tide: IERS Conventions 1996, p.56-65, step 1 and step 2, anelasticity variant, including tides of the 3-rd order. c. ocean loading: 3D ocean loading displacements computed by SPOTL software. The model of displacements caused by ocean loading contains 28 constituents. The following ocean tide models were used: Harmonic Phase rad Frequency rad/sec Model Comment k2-a 1.324501D+00 1.458530140651D-04 GOT00 admittance k2 3.506941D+00 1.458423171028D-04 GOT00 s2 6.283185D+00 1.454441043329D-04 GOT00 s2-a 4.312500D-02 1.452450074576D-04 GOT00 admittance m2 2.169437D+00 1.405189027044D-04 GOT00 m2-a 1.210284D+00 1.405082057420D-04 GOT00 admittance n2 6.097067D+00 1.378796996516D-04 GOT00 k1-a 1.141827D+00 7.293185551375D-05 GOT00 admittance k1 3.324267D+00 7.292115855138D-05 GOT00 k1-b 2.365113D+00 7.291046158901D-05 GOT00 admittance p1 2.958919D+00 7.252294578148D-05 GOT00 p1-a 3.002044D+00 7.232384890619D-05 GOT00 admittance o1 5.128356D+00 6.759774415297D-05 GOT00 o1-a 1.027610D+00 6.758704719061D-05 GOT00 admittance q1 2.772800D+00 6.495854110023D-05 GOT00 q1-a 4.955240D+00 6.494784413786D-05 GOT00 admittance mtm-a 4.652212D+00 7.973314413516D-06 NAO99.l admittance mtm 5.514660D-01 7.962617451151D-06 NAO99.l mf-a 2.296657D+00 5.334111360775D-06 NAO99.l admittance mf 4.479096D+00 5.323414398410D-06 NAO99.l msf 9.721550D-01 4.925201628510D-06 NAO99.l mm 5.497148D+00 2.639203052741D-06 NAO99.l msm 4.899785D+00 2.285998575769D-06 NAO99.l ssa 3.653480D-01 3.982127698995D-07 NAO99.l paw 5.012885D+00 1.991063797295D-07 equilibrium sa 3.098467D+00 1.990968752920D-07 NAO99.l pcw 2.003605D+00 1.671771314171D-07 equilibrium 18.6 4.100746D+00 1.069696236521D-08 equilibrium d. atmosphere loading: 3D displacements computed by convolving global surface pressure field on 2.5x2.5 degrees grid with 6 hour temporal resolution using the NCEP Reanalysis model [5]. 9. Data type: group delays 10. Data editing: 5 deg elevation cutoff 11. Data weighting. Weights are defined as follows: 1/sqrt ( f**2 + a**2 ) where "f" is formal uncertainty of the ionosphere free linear combination of group delays at X- and S-band obtained by fringe fitting on the base of achieved signal to noise ratio. The station-dependent parameter "a" was computed for each session by an iterative procedure such that the ratio of the sum of squares of weighted residuals to the estimate of their mathematical expectation is about unity. 12. Standard errors reported: all errors derived from least-squares estimation propagated from the data weights and the constraints applied to the estimated parameters. 13. Software: Calc 9.12, SOLVE revision date 2004.04.09 14. Other information: Mean pole coordinates used for computation of pole tide deformation were set to 0.0, 0.0 References: 1. Coordinates of the defining sources in ICRF http://hpiers.obspm.fr/webiers/results/icrf/icrfdef.html 2. MacMillan, D.S. and C. Ma, Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Lett., 22, 1041-1044, 1995. 3. MacMillan, D.S. and C. Ma, Atmospheric gradients and the VLBI terrestrial and celestial reference frames, Geophys. Res. Lett., 24, 453-456, 1997. 4. Takashima, K., et al., "Status and Results of GSI Domestic VLBI Network", Bulletin of the Geographical survey Institute, Vol. 46, March 2000, p. 1-9. 5. Petrov, L. and J.-P. Boy, "Study of the atmospheric pressure loading signal in VLBI observations", J. Geophys. Res., 10.1029/2003JB002500, vol. 109, No. B03405, 2004. 10-APR-2004 10:16:36 ---------------------------------------------------------------------------- Appendix B. ~~~~~~~~~~~ List of 218 sources with right ascension and declination estimated in each experiment when they participate: 0002+200 0008-421 0017+200 0021+243 0022-423 0025+197 0032+612 0037+139 \ 0037-593 0048-427 0056-572 0107-610 0116+319 0119+247 0127+084 0131-522 \ 0147-076 0150-334 0153-410 0201+088 0202-765 0206+136 0207-078 0214-522 \ 0235-618 0252-712 0253+133 0307+380 0312-770 0331+022 0334+014 0334-546 \ 0354+231 0355-483 0355-669 0358+210 0407-658 0423+233 0431-512 0450-743 \ 0454-463 0503-608 0509+152 0515+208 0517-726 0522-611 0534-340 0534-611 \ 0542-735 0547+234 0549+192 0600+219 0601+245 0610+171 0614-349 0615-365 \ 0622-441 0628-627 0629-418 0647-475 0700-465 0725+219 0728+249 0736-332 \ 0743-673 0744-691 0806-710 0809-493 0823-223 0823-500 0836+290 0842-754 \ 0844+387 0903-573 0936-853 0937+262 0952+581 0959-443 1004-500 1005-739 \ 1012-448 1013+208 1016-311 1020-103 1022-665 1026-084 1040+244 1043+066 \ 1049-650 1056+212 1058+726 1101-325 1109-567 1117+146 1121+238 1129-580 \ 1133-739 1143-696 1144+352 1156-663 1204+124 1215-457 1217+023 1228-113 \ 1234-504 1236-684 1239+606 1245-454 1251-407 1303-827 1318+225 1320-446 \ 1325-558 1334-649 1343-601 1352-632 1355-416 1412-368 1417-782 1420-679 \ 1423+146 1434+235 1448-648 1508-656 1511-476 1535+004 1540-828 1554-643 \ 1600+43A 1600+43B 1600-445 1600-489 1606-398 1608+243 1611-710 1617+229 \ 1624-617 1628+216 1633-810 1634+213 1637-771 1645+224 1646-506 1657-562 \ 1659-621 1705+135 1725+123 1725-795 1729-373 1733-565 1740-517 1748-253 \ 1756+237 1814-637 1815+531 1822-173 1829-106 1829-718 1843+400 1848+283 \ 1852-534 1901+155 1903-802 1910+052 1919+086 1932+106 1934-638 1936-623 \ 1950-613 1952+138 2058-425 2100+468 2101-715 2102-659 2115-305 2117-614 \ 2117-642 2134-470 2142-758 2146-783 2147+077 2152+226 2152-699 2205+166 \ 2205-636 2211-388 2214+241 2215-508 2223+210 2226-411 2229-172 2246+208 \ 2254-367 2258+166 2300-307 2300-683 2302+232 2311-452 2311-477 2314-340 \ 2321-375 2333-528 2340+233 4C55.17 CYGNUS-A HR1099 M104 NGC4278 \ NGC5077 NGC5141 NGC6034 NGC6500 NGC7720 UG01841 UG03927 UGC02748 \ VELA VELA-G Appendix C. ~~~~~~~~~~~ List of 110 stations for which troposphere gradients were not estimated: AIRA AUSTINTX AZORES BERMUDA BLKBUTTE BLOOMIND BREST CARNUSTY CARROLGA CHICHI10 CHLBOLTN CTVASBAY CTVASTJ DAITO DEADMANL DSS15 ELY FLAGSTAF FORTORDS FORT_ORD FTD_7900 GBT-VLBA GGAO7108 GIFU11 GIFU3 GOLDVENU GORF7102 GRASSE HALEAKAL HOFN HOHENFRG HOHNBERG JPL_MV1 KAINAN KANOZAN KARLBURG KASHIM11 KIRSBERG KODIAK KOGANEI KOGANEI3 KWAJAL26 LEONRDOK MAMMOTHL MARCUS MARPOINT MCD_7850 METSHOVI MIAMI20 MILESMON MIURA MIYAZAKI MIZNAO10 MIZUSGSI MOJ_7288 MON_PEAK MV2ONSLA NOBEY_6M NOME NRAO85_1 OCOTILLO OHIGGINS ONSALA85 OVR_7853 PARKES PBLOSSOM PENTICTN PINFLATS PLATTVIL PRESIDIO PT_REYES PVERDES QUINCY ROBLED32 SAGARA SANPAULA SEATTLE1 SESHAN25 SEST SHANGHAI SINTOTU SINTOTU3 SNDPOINT SOURDOGH SUWON SYOWA TATEYAMA TITIJIMA TOMAKO11 TOULOUSE TROMSONO TRYSILNO TIDBIN64 TIGOWTZL TSUKUBA TSUKU3 URUMQI USSURISK USUDA64 VERAMZSW VERNAL VICTORIA VLA VLA-N8 WHTHORSE YAKATAGA YEBES YELLOWKN YLOW7296 YUMA Appendix G. ~~~~~~~~~~~ Expansion of short-period variations in polar motion and UT1. UT1 tidal terms (microseconds) l l' F D Om GST | Cos | Sin | +pi | | | ----------------------------------------- 2 0 2 0 2 -1 -.13 -1.24 0 0 2 2 2 -1 .19 -.82 1 0 2 0 1 -1 -.50 -.92 1 0 2 0 2 -1 -2.64 -4.90 -1 0 2 2 2 -1 -1.10 -.77 0 0 2 0 1 -1 -2.51 -3.34 0 0 2 0 2 -1 -13.31 -17.72 -1 0 2 0 2 -1 .34 .63 1 0 0 0 0 -1 .48 .77 0 1 2 -2 2 -1 -.21 -.43 0 0 2 -2 2 -1 -3.20 -5.32 0 1 0 0 0 -1 .50 1.89 0 0 0 0 -1 -1 -.19 -.33 0 0 0 0 0 -1 9.83 16.45 0 0 0 0 1 -1 1.33 2.23 0 -1 0 0 0 -1 -.17 .41 0 0 -2 2 -2 -1 .08 -.04 -1 0 0 0 0 -1 .13 1.25 0 0 -2 0 -2 -1 .68 .33 0 0 -2 0 -1 -1 .44 .21 -1 0 -2 0 -2 -1 .18 .75 -1 0 -2 0 -1 -1 .12 .48 2 0 2 0 2 -2 -.30 .61 0 0 2 2 2 -2 -.83 .47 1 0 2 0 2 -2 -1.94 3.13 -1 0 2 2 2 -2 -.19 .67 0 0 2 0 1 -2 .37 -.57 0 0 2 0 2 -2 -9.88 15.37 -1 0 2 0 2 -2 .12 -.34 0 1 2 -2 2 -2 -.06 .17 0 0 2 -2 2 -2 -1.25 7.73 0 1 0 0 0 -2 .24 .27 0 0 0 0 0 -2 .28 2.48 0 0 0 0 1 -2 .08 .74 0 0 3 0 3 -3 .24 .03 0 0 0 4 1 -1 .26 .10 1 0 4 -2 2 -1 .43 -.52 0 0 0 1 0 -1 -.29 -.23 3 -1 2 0 2 -2 .14 .00 1 1 2 0 1 -2 -.26 -.40 0 0 0 -2 2 -2 .23 .09 ----------------------------------------- Polar motion tidal terms (microarcseconds) l l' F D Om GST | Cos | Sin | +pi | | | ----------------------------------------- -2 0 -2 0 -2 1 -6.90 5.52 0 0 -2 -2 -2 1 -8.63 3.00 -1 0 -2 0 -1 1 -5.58 1.48 -1 0 -2 0 -2 1 -29.56 7.83 1 0 -2 -2 -2 1 -7.86 3.64 0 0 -2 0 -1 1 -25.03 8.53 0 0 -2 0 -2 1 -132.70 45.21 1 0 -2 0 -2 1 2.59 .60 -1 0 0 0 0 1 3.26 -8.76 0 -1 -2 2 -2 1 1.25 9.68 0 0 -2 2 -2 1 -49.40 19.23 0 -1 0 0 0 1 25.06 6.71 0 0 0 0 1 1 -3.09 1.76 0 0 0 0 0 1 156.21 -88.75 0 0 0 0 -1 1 21.18 -12.04 0 1 0 0 0 1 4.99 .50 0 0 2 -2 2 1 3.25 2.62 1 0 0 0 0 1 .51 -4.99 0 0 2 0 2 1 5.93 -10.38 0 0 2 0 1 1 3.80 -6.65 1 0 2 0 2 1 .46 .59 1 0 2 0 1 1 .30 .37 -2 0 -2 0 -2 2 4.13 -.28 0 0 -2 -2 -2 2 -1.37 .40 -1 0 -2 0 -2 2 10.48 -12.69 1 0 -2 -2 -2 2 4.33 1.81 0 0 -2 0 -1 2 -1.06 2.12 0 0 -2 0 -2 2 28.34 -56.83 1 0 -2 0 -2 2 1.92 .54 0 -1 -2 2 -2 2 5.42 -4.28 0 0 -2 2 -2 2 -.48 -20.16 0 -1 0 0 0 2 2.61 1.85 0 0 0 0 0 2 -.83 -18.26 0 0 0 0 -1 2 -.25 -5.44 0 0 -3 0 -3 3 1.92 -1.16 0 0 0 -4 -1 1 5.23 -1.47 -1 0 -4 2 -2 1 -1.28 -3.62 0 0 0 -1 0 1 2.33 -2.61 -3 1 -2 0 -2 2 -.88 -1.13 -1 -1 -2 0 -1 2 .24 .00 0 0 0 2 -2 2 .05 -1.31 2 0 2 0 2 -2 2.33 7.19 0 0 2 2 2 -2 2.87 7.66 1 0 2 0 2 -2 .59 43.62 -1 0 2 2 2 -2 -3.07 8.30 0 0 2 0 1 -2 .50 -9.59 0 0 2 0 2 -2 -13.37 257.07 -1 0 2 0 2 -2 1.83 -7.67 0 1 2 -2 2 -2 -7.08 .33 0 0 2 -2 2 -2 -72.53 106.95 0 1 0 0 0 -2 .34 -4.29 0 0 0 0 0 -2 -18.74 12.64 0 0 0 0 1 -2 -5.59 3.77 0 0 3 0 3 -3 -.56 -1.57 3 -1 2 0 2 -2 -.98 4.60 1 1 2 0 1 -2 -.62 4.28 0 0 0 -2 2 -2 -.83 2.72 ----------------------------------------- Appendix H. ~~~~~~~~~~~ EPHEDISP Format version of 2002.12.12 # #============================ Beginning of comments: =========================== # # This file contains the time series of site displacements # of a transient model of postseismic decay after the Denali # earthquake on Nov. 3, 2002. The solution parameters were # determined in solution dm1004gilc # # The model has the form X1*[1 - exp(-(t-t_denali)/tau] # for E-W and for N-S motion, where the amplitude, X1, and # decay time, tau, were estimated for each horizontal # direction from time series generated in dm4005gilc. # East: X1 = 9.66 mm tau = 0.321 years # North: X1 = -28.90 mm tau = 1.171 years # No transient model was generated for the vertical. # #============================ End of comments: ================================= # # # # # sites # epochs # points # P T 3 S 1 E 124 D 124 # # First epoch of site displacements # T begin 52580 0.0 2002.11.02-00:00:00 # # Last epoch of site displacements # T end 53810 0.0 2006.03.14-00:00:00 # # Sampling interval in days T sample 10.00000000000 # # Site ID X-coord. Y-coord. Z-coord. phi-geoc. longit. height # S GILCREEK -2281547.3090 -1453645.0860 5756993.1620 64.8306 212.5025 332.8 # # Postseismic Displacement # Epoch MJD Time Calendar date Site ID Up East North # D 1 52580 .0 GILCREEK .00000 .00000 .00000 D 2 52590 .0 GILCREEK .00000 .00079 -.00067 D 3 52600 .0 GILCREEK .00000 .00151 -.00132 D 4 52610 .0 GILCREEK .00000 .00218 -.00196 D 5 52620 .0 GILCREEK .00000 .00279 -.00258 D 6 52630 .0 GILCREEK .00000 .00335 -.00319 D 7 52640 .0 GILCREEK .00000 .00387 -.00378 D 8 52650 .0 GILCREEK .00000 .00434 -.00436 D 9 52660 .0 GILCREEK .00000 .00478 -.00493 D 10 52670 .0 GILCREEK .00000 .00518 -.00548 D 11 52680 .0 GILCREEK .00000 .00554 -.00603 D 12 52690 .0 GILCREEK .00000 .00588 -.00655 D 13 52700 .0 GILCREEK .00000 .00619 -.00707 D 14 52710 .0 GILCREEK .00000 .00647 -.00757 D 15 52720 .0 GILCREEK .00000 .00673 -.00807 D 16 52730 .0 GILCREEK .00000 .00697 -.00855 D 17 52740 .0 GILCREEK .00000 .00719 -.00902 D 18 52750 .0 GILCREEK .00000 .00739 -.00948 D 19 52760 .0 GILCREEK .00000 .00758 -.00993 D 20 52770 .0 GILCREEK .00000 .00775 -.01037 D 21 52780 .0 GILCREEK .00000 .00790 -.01079 D 22 52790 .0 GILCREEK .00000 .00805 -.01121 D 23 52800 .0 GILCREEK .00000 .00818 -.01162 D 24 52810 .0 GILCREEK .00000 .00830 -.01202 D 25 52820 .0 GILCREEK .00000 .00841 -.01241 D 26 52830 .0 GILCREEK .00000 .00851 -.01279 D 27 52840 .0 GILCREEK .00000 .00861 -.01316 D 28 52850 .0 GILCREEK .00000 .00869 -.01353 D 29 52860 .0 GILCREEK .00000 .00877 -.01388 D 30 52870 .0 GILCREEK .00000 .00884 -.01423 D 31 52880 .0 GILCREEK .00000 .00891 -.01457 D 32 52890 .0 GILCREEK .00000 .00897 -.01490 D 33 52900 .0 GILCREEK .00000 .00903 -.01522 D 34 52910 .0 GILCREEK .00000 .00908 -.01554 D 35 52920 .0 GILCREEK .00000 .00913 -.01585 D 36 52930 .0 GILCREEK .00000 .00917 -.01615 D 37 52940 .0 GILCREEK .00000 .00921 -.01645 D 38 52950 .0 GILCREEK .00000 .00925 -.01673 D 39 52960 .0 GILCREEK .00000 .00928 -.01701 D 40 52970 .0 GILCREEK .00000 .00931 -.01729 D 41 52980 .0 GILCREEK .00000 .00934 -.01756 D 42 52990 .0 GILCREEK .00000 .00937 -.01782 D 43 53000 .0 GILCREEK .00000 .00939 -.01808 D 44 53010 .0 GILCREEK .00000 .00941 -.01833 D 45 53020 .0 GILCREEK .00000 .00943 -.01857 D 46 53030 .0 GILCREEK .00000 .00945 -.01881 D 47 53040 .0 GILCREEK .00000 .00947 -.01904 D 48 53050 .0 GILCREEK .00000 .00948 -.01927 D 49 53060 .0 GILCREEK .00000 .00950 -.01949 D 50 53070 .0 GILCREEK .00000 .00951 -.01971 D 51 53080 .0 GILCREEK .00000 .00952 -.01992 D 52 53090 .0 GILCREEK .00000 .00954 -.02013 D 53 53100 .0 GILCREEK .00000 .00955 -.02033 D 54 53110 .0 GILCREEK .00000 .00955 -.02053 D 55 53120 .0 GILCREEK .00000 .00956 -.02072 D 56 53130 .0 GILCREEK .00000 .00957 -.02091 D 57 53140 .0 GILCREEK .00000 .00958 -.02110 D 58 53150 .0 GILCREEK .00000 .00959 -.02128 D 59 53160 .0 GILCREEK .00000 .00959 -.02145 D 60 53170 .0 GILCREEK .00000 .00960 -.02163 D 61 53180 .0 GILCREEK .00000 .00960 -.02179 D 62 53190 .0 GILCREEK .00000 .00961 -.02196 D 63 53200 .0 GILCREEK .00000 .00961 -.02212 D 64 53210 .0 GILCREEK .00000 .00962 -.02228 D 65 53220 .0 GILCREEK .00000 .00962 -.02243 D 66 53230 .0 GILCREEK .00000 .00962 -.02258 D 67 53240 .0 GILCREEK .00000 .00963 -.02272 D 68 53250 .0 GILCREEK .00000 .00963 -.02287 D 69 53260 .0 GILCREEK .00000 .00963 -.02301 D 70 53270 .0 GILCREEK .00000 .00963 -.02314 D 71 53280 .0 GILCREEK .00000 .00964 -.02328 D 72 53290 .0 GILCREEK .00000 .00964 -.02341 D 73 53300 .0 GILCREEK .00000 .00964 -.02353 D 74 53310 .0 GILCREEK .00000 .00964 -.02366 D 75 53320 .0 GILCREEK .00000 .00964 -.02378 D 76 53330 .0 GILCREEK .00000 .00964 -.02390 D 77 53340 .0 GILCREEK .00000 .00965 -.02401 D 78 53350 .0 GILCREEK .00000 .00965 -.02412 D 79 53360 .0 GILCREEK .00000 .00965 -.02423 D 80 53370 .0 GILCREEK .00000 .00965 -.02434 D 81 53380 .0 GILCREEK .00000 .00965 -.02445 D 82 53390 .0 GILCREEK .00000 .00965 -.02455 D 83 53400 .0 GILCREEK .00000 .00965 -.02465 D 84 53410 .0 GILCREEK .00000 .00965 -.02475 D 85 53420 .0 GILCREEK .00000 .00965 -.02485 D 86 53430 .0 GILCREEK .00000 .00965 -.02494 D 87 53440 .0 GILCREEK .00000 .00965 -.02503 D 88 53450 .0 GILCREEK .00000 .00965 -.02512 D 89 53460 .0 GILCREEK .00000 .00965 -.02521 D 90 53470 .0 GILCREEK .00000 .00966 -.02529 D 91 53480 .0 GILCREEK .00000 .00966 -.02538 D 92 53490 .0 GILCREEK .00000 .00966 -.02546 D 93 53500 .0 GILCREEK .00000 .00966 -.02554 D 94 53510 .0 GILCREEK .00000 .00966 -.02561 D 95 53520 .0 GILCREEK .00000 .00966 -.02569 D 96 53530 .0 GILCREEK .00000 .00966 -.02577 D 97 53540 .0 GILCREEK .00000 .00966 -.02584 D 98 53550 .0 GILCREEK .00000 .00966 -.02591 D 99 53560 .0 GILCREEK .00000 .00966 -.02598 D 100 53570 .0 GILCREEK .00000 .00966 -.02604 D 101 53580 .0 GILCREEK .00000 .00966 -.02611 D 102 53590 .0 GILCREEK .00000 .00966 -.02618 D 103 53600 .0 GILCREEK .00000 .00966 -.02624 D 104 53610 .0 GILCREEK .00000 .00966 -.02630 D 105 53620 .0 GILCREEK .00000 .00966 -.02636 D 106 53630 .0 GILCREEK .00000 .00966 -.02642 D 107 53640 .0 GILCREEK .00000 .00966 -.02648 D 108 53650 .0 GILCREEK .00000 .00966 -.02653 D 109 53660 .0 GILCREEK .00000 .00966 -.02659 D 110 53670 .0 GILCREEK .00000 .00966 -.02664 D 111 53680 .0 GILCREEK .00000 .00966 -.02669 D 112 53690 .0 GILCREEK .00000 .00966 -.02674 D 113 53700 .0 GILCREEK .00000 .00966 -.02679 D 114 53710 .0 GILCREEK .00000 .00966 -.02684 D 115 53720 .0 GILCREEK .00000 .00966 -.02689 D 116 53730 .0 GILCREEK .00000 .00966 -.02694 D 117 53740 .0 GILCREEK .00000 .00966 -.02698 D 118 53750 .0 GILCREEK .00000 .00966 -.02703 D 119 53760 .0 GILCREEK .00000 .00966 -.02707 D 120 53770 .0 GILCREEK .00000 .00966 -.02711 D 121 53780 .0 GILCREEK .00000 .00966 -.02715 D 122 53790 .0 GILCREEK .00000 .00966 -.02719 D 123 53800 .0 GILCREEK .00000 .00966 -.02723 D 124 53810 .0 GILCREEK .00000 .00966 -.02727 # EPHEDISP Format version of 2002.12.12