Technical description of solution usn2014a 2014 June 1. Purpose of solution: TRF/CRF for session EOP 2. Analysis center: USN ( United States Naval Observatory ) 3. Short narrative description of solution: Solution usn2014a estimates station position and velocity parameters to define the TRF/CRF for computing EOP time series. Source positions are also estimated. The TRF is attached to VTRF2008 by imposing no-net-rotation and no-net-translation conditions for the positions of a subset of stations and, similarly, no-net-rotation and no-net-translation conditions for the velocities of a subset of stations. The CRF is attached to the ICRF by a no-net-rotation condition using the 295 ICRF2 defining sources [1]. Parameters are split into three groups: a) global - parameters estimated over all sessions; b) local - parameters estimated for each 24-hour session; c) segmented - parameters estimated over 60 minute time spans. Positions and velocities of 144 stations were estimated as global parameters. Positions of 846 sources were estimated as global parameters. These 846 sources were considered eligible for estimation as global parameters based on the following criteria: 1) the source had 40 or more good observations; 2) the source was observed during two or more sessions; and 3) the source had N.R.D. less than 1.3 in preliminary solutions. Positions for an additional 852 sources were estimated for each session independently (treated as arc parameters). Finally, 144 sources (APPENDIX B) were excluded from the solution due to bad data or insufficient number of observations (less than 2). Mean site gradients were computed from a GSFC Data Assimilation Office (DAO) model for met data for ICRF2 [1] (icrf2-gd2.mgr). Atmospheric gradient delay is modeled as tau = m_grad(el,az) * [GN*cos(az)+GE*sin(az)], where el and az are the elevation and azimuth of the the observation and the gradient mapping function is m_grad. The gradient vector has east and north components GE and GN. Refer to [2], [3]. 3a. Differences with respect to previous solution: Added an additional 221 databases with 689,046 addtional observations. CALC 11 was used. 3b. Handling of earthquakes: TICOCONC was affected by a large nearby earthquake in Chile on Feb. 27, 2010, and experienced an episodic offset of more than 3 meters, mostly in the westward direction. An episodic break cannot model the motion properly. Therefore, we have continued to use a user partial program to estimate offsets at TIGOCONC for each session after the earthquake. A large earthquake also ocurred of the coast of Japan on March 11, 2011. The motions of several Japanese stations have been non-linear since then, and so the same user partial program was also used to estimate the positions of TIGOCONC, TSUKUB32, KASHIM34, KASHIM11, VERAMZSW, SINTOTU3, USUAD64, and KOGANEI for each session after the March 11, 2011 earthquake. Several episodic breaks are solved for. These are listed in section 6h. 4. Estimated parameters: a. celestial frame: right ascension, declination (global and local) b. terrestrial frame: X, Y, Z, Xdot, Ydot, Zdot (global) c. Earth Orientation: X-pole, Y-pole, UT1-TAI, Xdot, Ydot, UT1dot, X-nutation, Y-nutation (local parameters). d. zenith troposphere: continuous piece-wise linear; 20 min interval; rate constraint generally 50 ps/hr; NMF wet partial derivative (segmented) e. troposphere gradient: 6 hour east and north piece-wise continuous at all stations except a set of 110 stations (APPENDIX C); offset constraint 0.5 mm, rate constraint 2.0 mm/day (segmented) f. station clocks: quadratic + continuous piece-wise linear with 60 min interval; rate constraint generally 5.0E-14 (segmented) g. baseline clocks: set in initial analysis - usually used (local) h. other: global antenna axis offsets for 88 stations (APPENDIX D) (global) 5. Celestial reference frame: a. a priori source positions: ICRF2 b. source positions adjusted in solution: yes If yes, c. definition of orientation: no-net-rotation tie to the ICRF2 using only ICRF2 defining sources d. source position estimation: 846 global and 852 local 6. Terrestrial reference frame: a. a priori station positions: VTFRF008a b. a priori station velocities: VTRF2008a c. reference epoch for site positions: 2008.0 d. station positions/velocities adjusted in solution: yes If yes, e. definition of origin, orientation, and their time evolution: no-net-translation and no-net-rotation of position with respect to VTRF2008 for 33 stations: ALGOPARK BR-VLBA DSS45 FD-VLBA FORTLEZA HARTRAO HATCREEK HAYSTACK \ HN-VLBA HOBART26 -ASHIM34 KASHIMA KAUAI KOKEE KP-VLBA LA-VLBA \ MATERA -K-VLBA NL-VLBA NOTO NRAO20 NRAO85_3 NYALES20 ONSALA60 \ OV-VLBA OVRO_130 PIETOWN RICHMOND SANTIA12 SC-VLBA SESHAN25 -SUKUB32 \ VNDNBERG WESTFORD WETTZELL SVETLOE no-net-translation and no-net-rotation of velocity with respect to VTRF2008 for the same 33 stations: ALGOPARK BR-VLBA DSS45 FD-VLBA FORTLEZA HARTRAO HATCREEK HAYSTACK \ HN-VLBA HOBART26 -ASHIM34 KASHIMA KAUAI KOKEE KP-VLBA LA-VLBA \ MATERA -K-VLBA NL-VLBA NOTO NRAO20 NRAO85_3 NYALES20 ONSALA60 \ OV-VLBA OVRO_130 PIETOWN RICHMOND SANTIA12 SC-VLBA SESHAN25 -SUKUB32 \ VNDNBERG WESTFORD WETTZELL SVETLOE f. station parameter estimation: X, Y, Z, Xdot, Ydot, Zdot globally for all stations, some with constraints g. stations with constraints: A priori velocity of U, E, and N components for the stations listed in APPENDIX E were constrained to the VTRF2008 velocities with reciprocal weights 0.1, 3.0, and 3.0 mm/yr respectively because the stations have too short history of observations, in many cases only one occupation. The velocities of the stations listed in APPENDIX F were constrained to be the same. h. stations with discontinuous positions and date of discontinuity: YAKATAGA 871201 * Earthquake SOURDOGH 871201 * Earthquake WHTHORSE 871201 * Earthquake FORTORDS 891001 * Seismic event PRESIDIO 891001 * Seismic event MOJAVE12 920627 * Earthquake DSS15 920627 * Earthquake MEDICINA 960601 * Rail reparing EFLSBERG 961001 * Rail reparing DSS65 970415 * Rail reparing MIURA 000901 * Dike intrusion, June-Aug. 2000 TATEYAMA 000901 * Dike intrusion, June-Aug. 2000 GGAO7108 030101 * Station relocation SINTOTU3 030915 * h/z ** SVETLOE 060701 * Rail repair ?????? MK-VLBA 061015 * Earthquake ZELENCHK 070701 * Rail repair ?????? AIRA 080614 * M7.2 Iwate Miyagi Nairiku earthquake CHICHI10 080614 * M7.2 Iwate Miyagi Nairiku earthquake KASHIM34 080614 * M7.2 Iwate Miyagi Nairiku earthquake TSUKUB32 080614 * M7.2 Iwate Miyagi Nairiku earthquake VERAMZSW 080614 * M7.2 Iwate Miyagi Nairiku earthquake * TIGOCONC 100227 * Big Earthquake * TSUKUB32 110311 * Big Earthquake in Japan * KASHIM11 110311 * Big Earthquake in Japan * KASHIM34 110311 * Big Earthquake in Japan * VERAMZSW 110311 * Big Earthquake in Japan VERAISGK 110311 * Big Earthquake in Japan SINTOTU3 110311 * Big Earthquake in Japan i. stations with nonlinear velocities: HRAS_085, GILCREEK, PIETOWN j. relativity scale: G_oo = -(1 - (2W/c^2 + W^2/c^4) + 2L_g ) G_oa = -4W^a/c^3 G_ab = \delta_ab (1 + 2W/c^2 - 2L_g) ) Specifically, the old formula 29 in IERS Conventions 1992, page 127-136. k. permanent tide correction: yes "Yes" means that both the permanent and the periodic tides have been included in the model, so that the output station position is for after the removal of both the permanent and the periodic tidal effect. The model used includes tide displacements for zero frequency with Love numbers h2(freq=0) = 0.6078, l2(freq=0) = 0.0847 7. Earth orientation: a. A priori precession/nutation model: IAU2006/2000A Precession/Nutation, IERS Conventions 2010 [6] as implementated in Calc 11. b. A priori short-period tidal variations in X, Y, UT1 due to short period tidal and nutation effects were applied. These were computed by Calc 11, as recommended in the IERS 2010 Conventions [6], chapter 5, p. 50-51. c. EOP estimation: Two tables are given: usn2014a.eoxy: X, Y, UT1, Xdot, Ydot, UT1dot, X-nutation, Y-nutation, each session. Using a priori error of 45 mas for pole and 3 ms for UT1, 45 mas/day and 3 ms/day for pole rate and UT1 rate to allow estimation for one-baseline sessions; X-nutation and Y-nutation are relative to IAU2000A/2006 Nutation/Precession models. Time tag of the EOP series is the middle epoch of the observing session. usn2014a.eops: X, Y, UT1, Xdot, Ydot, UT1dot, Deps, Dpsi, each session. Deps and Dpsi are relative to the IAU 1976 precession and IAU 1980 nutation models. {Internally, Calc/Solve estimated offsets to the X and Y precession/nutation quantities, relative to the IAU2000A/2006 nutation/precession models, using the IERS 2010 Conventions [6] implementation. These were converted to classical Dpsi and Deps nutation offsets relative to the IAU 2000A nutation model. These were then converted to the IAU 1976/1980 precession/nutation (Wahr) model by adding the following terms: Deps: -25.24*Cent - 6.8192 (m-arc-sec), and Dpsi: -299.65*Cent - 41.775 (m-arc-sec), where Cent is the epoch in fractional centuries since 2000.0 (Julian date 2451545.0). This conversion is not quite correct though. There are some long term drifts that are not accounted for. See reference [7].} High frequency variations in polar motion and UT1, as computed by Calc 11, were added to the a priori EOP during the Solve/Globl solution. The reported values of polar motion and UT1 are the sum of the adjustments and the apriori EOP without contribution due to the high frequency variations. Thus, the final series of polar motion and UT1 do not contain contributions due to high frequency variations. 8. A priori geophysical models: a. troposphere: NMF dry mapping function; Saastamoinen zenith delay calculated using logged pressure, temperature; a priori mean gradients from DAO weather model. b. Solid Earth tide: IERS Conventions 2010 [6], chapter 7, steps 1 and 2, including tides of the 2-nd and 3-rd order. c. ocean loading: 3D ocean loading displacements computed by SPOTL software by Leonid Petrov. Harmonic model 2007b_oclo.hps d. atmosphere loading: 3D displacements computed by convolving global surface pressure field on 2.5x2.5 degrees grid with 6 hour temporal resolution using the NCEP Reanalysis model by Leonid Petrov. f. Antenna thermal deformation: Antenna heights were adjusted, based on the average daily temperatures, using the IVS antenna thermal deformation model of Nothnagel 2008 [7]. 9. Data type: group delays 10. Data editing: 5 degree elevation cutoff 11. Data weighting. Weights are defined as follows: 1/sqrt ( f**2 + a**2 ) where "f" is formal uncertainty of the ionosphere free linear combination of group delays at X- and S-band obtained by fringe fitting on the base of achieved signal to noise ratio. The station-dependent parameter "a" was computed for each session by an iterative procedure such that the ratio of the sum of squares of weighted residuals to the estimate of their mathematical expectation is about unity. 12. Standard errors reported: all errors derived from least-squares estimation propagated from the data weights and the constraints applied to the estimated parameters. 13. Software: Calc 11, SOLVE revision date 2014.02.21. 14. Other information: Mean pole coordinates used for computation of pole tide deformation were set to 0.0, 0.0 References: 1. IERS Technical Note 35, 'The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry'; A.L. Fey, D. Gordon, C.S. Jacobs, editors; 2009. http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn35.html 2. MacMillan, D.S. and C. Ma, Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Lett., 22, 1041-1044, 1995. 3. MacMillan, D.S. and C. Ma, Atmospheric gradients and the VLBI terrestrial and celestial reference frames, Geophys. Res. Lett., 24, 453-456, 1997. 4. Takashima, K., et al., "Status and Results of GSI Domestic VLBI Network", Bulletin of the Geographical survey Institute, Vol. 46, March 2000, p. 1-9. 5. Petrov, L. and J.-P. Boy, "Study of the atmospheric pressure loading signal in VLBI observations", J. Geophys. Res., 10.1029/2003JB002500, vol. 109, No. B03405, 2004. 6. Petit, Gerard and Luzum, Brian, 'IERS Conventions (2010), IERS Technical Note 36, 2010. 7. Nothnagel, A., "Short Note: Conventions on Thermal Expansion Modelling of Radio Telescopes for Geodetic and Astrometric VLBI," Journal of Geodesy, DOI: 10.1007/s00190-008-0284-z, 2008. APPENDIX A. ----------- * * 848 sources considered eligible for estimation as global parameters * based on the following criteria applied to the preliminary solution: * 1) 40 or more good observations * 2) observed in 3 or more experiments (no time restriction) * 3) have NRD less than 1.3 in preliminary solution * 4) includes all ICRF2 Defining sources * 2358+189 0002-478 0003+380 0003-066 IIIZW2 0007+171 0008-264 0010+405 \ 0013-005 0014+813 0017+200 0016+731 0019+058 0021+243 0025+197 0026+346 \ 0035-252 0035+413 0037+139 0039+230 NGC0262 0046+511 0047+023 0047-579 \ 0048-097 0048-427 0054+161 NGC0315 0055-059 0056-001 0059+581 0104-408 \ 0106+013 0107-610 0109+224 0110-668 0110+495 0111+021 0112-017 0113-118 \ 0115-214 0116-219 0118-272 0119+115 0119+041 0122-514 0123+257 0127+084 \ 0130-171 0131-522 0133+476 0134+311 0135-247 0136-059 0137+012 0138-097 \ 0144+584 0146+056 0148+274 0149+218 0150-334 0151+474 0153+744 0159+723 \ 0201+113 0202+149 0202-172 0202+319 0203+625 0206+136 0208-512 0212-620 \ 0211+171 0212+735 0215+015 0219+428 0220-349 UG01841 0221+067 4C67.05 \ 0227-369 0230-790 0229+131 0234-301 0235-618 0234+285 0235+164 0237-027 \ 0237+040 LSI61303 NGC1052 0239+175 0239+108 0241+622 0248+430 0252-549 \ 0256+075 0256-005 0259+121 0300+470 0302-623 0302+625 NGC1218 0306+102 \ 0308-611 0307+380 0309+411 0312+100 0316-444 3C84 0317+188 0319+121 \ 0319+396 0322+222 0325+395 0326+278 0327+467 0332-403 0332+078 0334-546 \ NRAO140 0335-364 CTA26 0338-214 0340+362 0341+158 0342+147 0342+538 \ 0346-279 0345+460 0347-211 0355-669 0352+605 NRAO150 0358+040 0358+210 \ 0400-319 0400+258 0402-362 0403-132 0403-179 0405-385 0405-123 0405+305 \ 0406-127 0406+121 0409+229 0410+110 0414-189 0415+398 0420+022 0420-014 \ 0420+417 0422-380 0422+004 0423+051 0423+233 0425+048 0426-380 0426+273 \ 0430+289 0434-188 0436-129 0437-454 0438-436 NRAO190 0440+345 0442+389 \ 0446+112 0444+634 0454-810 0446+595 0451-282 0454-463 0454-234 0457+024 \ 0458-020 0458+138 0459+060 0459+135 0459+252 0500+019 0503-608 0502+049 \ 0506-612 0454+844 0506+101 0507+179 0508+138 0511-220 0516-621 0515+208 \ 3C138 0522-611 0521-365 0524-460 0524-485 0524+034 0530-727 0528-250 \ 0528+134 0529+075 0529+483 0534-611 0534-340 0537-441 0537-158 0536+145 \ 0537-286 0539-057 3C147 0544+273 0549-575 0547+234 0548+378 0549+192 \ 0552+398 0554+242 0556+238 0600+177 0600+219 0601+245 0602+405 0604-074 \ 0602+673 0605-085 0606-223 0607-157 0610+260 0611+131 0609+607 0613+570 \ 0620+389 0615+820 0627-199 0629-418 0629+160 0632-235 0637-752 0637-337 \ 0636+680 0641+392 3C166 0642+449 0646-306 0648-165 0650+371 0651+410 \ 0654+244 0656+082 0657+172 0700-197 0707+476 0711+356 0714+457 0716+714 \ 0722+145 0723-189 0723-008 0718+793 0723+219 0725+219 0727-115 0729+259 \ 0733-174 0735+178 0738-674 0736+017 0738+491 0743-673 0742+103 0743-006 \ 0743+259 0743+277 0745+241 0747+185 0748+126 0749+540 0754+100 0759+183 \ 0800+618 0805+046 0805-077 0804+499 0805+410 0808+019 0812+020 0812+367 \ 0814+425 0818-128 0820+560 0821+394 0822+137 0821+621 0823+033 0823-223 \ 0826-373 0827+243 0829+046 0829+089 0828+493 0831+557 0834-201 0833+585 \ 0834+250 0836+182 0836+710 0839+187 0847-120 0850+581 OJ287 0854-108 \ 0854+213 0859-140 0859+470 0906+015 0912+029 0912+297 0917+449 0919-260 \ 0917+624 0920-397 0920+390 4C39.25 0925-203 0943+105 0945+408 0949+354 \ 0951+268 0952+179 SN1993J M81 OK290 0955+476 0955+326 0954+658 \ 0958+346 1004-500 1004-217 1004+141 1011+250 1012+232 1012-448 1013+127 \ 1013+054 1013+208 1014+615 1015+359 1015+057 1016-311 1019+416 1020+400 \ 1022-665 1021-006 1022+194 1023+131 1027-186 1030+415 1030+074 1032-199 \ 1034-374 1034-293 1036-529 1038+064 1038+52A 1038+52B 3C245 1040+244 \ 1039+811 1042+071 1045-188 1044+719 1046-409 1048-313 1049+215 1053+704 \ 1055-301 1053+815 1055+018 1057-797 1056+212 1059+282 1100+122 1101-325 \ 1101-536 1101+384 1104-445 1104+728 1111+149 1116-462 1116+128 1119+183 \ 1123+264 1124-186 1125+366 1125+596 1127-145 1128+385 1128-047 1129-580 \ 1130+009 1133-032 MRK180 NGC3862 1142+052 1143-696 1143-245 1143-287 \ 1143-332 1144+402 1144-379 1145-071 1145+268 NGC3894 1147+245 1148-001 \ 1148-671 1149-084 1150+812 1150+497 1155+251 1156-094 1156-663 1156+295 \ 1212+171 1213-172 1213+350 1215+303 1216+487 NGC4261 1219+285 1219+044 \ 1221+809 1222+037 M84 1223-188 1226-028 1226+373 3C273B 3C274 \ 1236+077 1237-101 1236-684 1239+606 1239+376 1240+381 1243-160 1243-072 \ 1244-255 1245-454 1251-197 1252+119 1251-713 3C279 1254+571 1255-316 \ 1255-177 1257+145 1300+580 1300-105 1302-102 1306+360 1307+121 1308+326 \ 1308+328 1308+554 1313-333 OP326 1318+225 1322+835 1324+224 1325-558 \ 1327+504 3C286 1330+476 1330+022 1331+170 1333-152 1333-337 1334-127 \ 1338+381 1339-287 1342+662 1342+663 1347+539 1348+308 1349-439 1351-018 \ 1352-104 1354+195 1354-174 1354-152 1357+769 1402-012 1402+044 OQ208 \ 1406-076 1406-267 1409+218 1412-368 1413+135 1413+349 1416+067 1418+546 \ 1417+385 1417+273 1420+326 1420-679 1423+146 1424+366 1424+240 1424-418 \ 1427+543 1428+422 1428+370 NGC5675 1430-178 1432+200 1433+304 1434+235 \ 1435+638 1435-218 1441+252 OQ172 1443-162 1444+175 1445-161 1448+762 \ 1448-648 1451-375 1451-400 1454-354 1456+044 1459+480 1502+106 1502+036 \ 1504+377 1504-166 1508+572 1508-055 1510-089 1511-100 1511-476 1514+197 \ 1514-241 1520+437 1520+319 1519-294 1519-273 1522+155 1532+016 1538+149 \ 1547+507 1546+027 1548+056 1550-242 1551+130 1549-790 1555+001 1555-140 \ 1554-643 1557+032 1556-245 1600+335 1600-294 1601+112 1600-445 1602-115 \ 1604-333 1606+106 CTD93 1606-398 1608+243 1611+343 1611-710 1614+051 \ 1613-586 1610-771 1615+029 1616+063 1617+229 1619-680 1623+578 1622-253 \ 1624+416 1622-297 1624-617 NGC6251 1633+38 1636+473 1637+574 1635-035 \ NRAO512 1639+230 1639-062 1642+690 1633-810 3C345 1647-296 1651+391 \ DA426 1656+348 1656+477 1655+077 1656+053 1656-075 1657-261 1659+399 \ 1657-562 1659-621 1705+456 1705+018 1705+135 1706-174 1708+433 1710-323 \ 1717+178 1718-259 1722+330 1726+455 1725+123 1727+502 1725+044 NRAO530 \ 1725-795 1732+389 1734+363 1734+508 1736+324 1738+499 1738+476 1737-081 \ 1739+522 1741-038 NGC6454 1743+173 1745+624 1746+470 1749+701 1749+096 \ 1751+441 1751+288 1754+159 1754+155 1758+388 1803+784 1800+440 1759-396 \ 1758-651 3C371 1806+456 1806-458 1815-553 1817-254 1823+689 1821+107 \ 1823+568 1822-173 1825-041 1824-582 1830+139 1830+285 1831-711 3C390.3 \ 1842+681 1843+400 1846+322 1845-273 1849+670 1856+736 1853-122 3C395 \ 1901+016 1901+155 1905+222 1908+484 1908-201 1909+161 1903-802 1910+052 \ 1918-026 1920-211 1922+155 1921-293 1922-224 1923+210 1928+738 1925-206 \ 1926+087 1927+256 1925-610 1928+154 1929+226 1929-457 1932+204 1936+714 \ 1933-400 1936-155 1937-101 1935-692 1943+228 1951+355 1954+513 1955+335 \ 1954-388 1958-179 2000+472 2000+148 2000-330 2007+777 2002-375 2005+642 \ 2005+403 2005-489 OW-015 2008-159 2013+163 2017+743 2021+317 2022+171 \ 2023+336 2029+024 2030+547 2029+121 2030-689 3C418 2037-253 2043+156 \ CL4 2051+745 2053-044 2052-474 2054-377 2058-297 2059+034 2059-786 \ 2106+143 2106-413 2112+283 2113+293 2109-811 2117-614 2121+460 2121+053 \ 2123-463 2126-158 2127-096 2128-123 2131-021 2134+00 2136+141 2138-377 \ 2140-048 2141+175 2142+110 2143-156 2144+092 2142-758 2145+082 2145+067 \ 2149+056 2149-306 2146-783 2150+173 2151-118 2155+312 2155-152 2155-304 \ VR422201 2201+315 2201+171 2203+292 2204-540 2205+166 2208-137 2209+236 \ 2210-257 2214+350 2215+020 2215+150 2216-038 2216+178 2220-351 2223+210 \ 3C446 2227-088 2229+695 2227-399 CTA102 2232-488 2234+282 2233-148 \ 2235+731 2236+678 2236-572 2239+096 2243+047 2243-123 2244-372 2245-328 \ 2250+194 3C454.3 2252-089 2253+417 2254+074 2254+024 2255-282 2300-683 \ 2302+232 2306-312 2307+106 2309+454 2312-319 2314-340 2314-409 2316+238 \ 2318+049 2319+317 2319+272 2319+444 2320+506 2320-035 2321-375 2324+151 \ 2325+093 2325-150 2326-477 2328+107 2329-162 2329-384 2329-415 2331-240 \ 2333-528 2333-415 2335-027 2336+598 2344+09A 2344-514 2345-167 2351-309 \ 2351+456 2351-154 2353-686 2353+816 2355-534 2355-106 2356+385 2357-318 APPENDIX B. ----------- * * 6 gravitational lenses with equal components * (really just two sources with three names each) * 0218+357 0218+35A 0218+35B 1830-211 1830-21A 1830-21B \ * * 3 sources with really bad data (not sure why?) * 0753-425 0833-450 2224-308 \ * * 127 sources with less than 3 (0,1,2) observations in crf2014a_00 * 0000-160 0008-300 UG00192 4C+00.02 OB338 0036-216 0040+517 0045-255 \ NGC0253 0106+130 0127+145 0131-450 0131-367 0201-440 M77 0250+178 \ 0253-218 NGC1167 UXARI 0328-272 0333-276 0340+044 0420-625 0428+205 \ 0434+299 HD32918 0515-674 0512+249 0514+109 0521+793 0537-692 0535+677 \ NGC2110 0558-504 0611+139 MRK003 NGC2146 0629+104 0633-263 0731-465 \ 0802-276 0809+483 0817+472 0830+115 0833+441 4C+32.26 0844+387 0855+143 \ 0858-279 0902+343 0937-282 0941-080 M82 0951+699 NGC3079 1017+109 \ 1020-103 1020+191 1026-179 1039-474 1045+155 1046-026 1046+588 1055-242 \ NGC3690 M106 1225-023 1224-854 1239-044 1243-412 1245-197 1305-241 \ 1313+200 NGC5077 1320-407 1329-665 1331+512 1421-490 1422+268 TON202 \ 1438-390 1439+327 HD132742 1511+238 1528-274 1528-509 SIGCRB 1622+238 \ 1623-243 3C343 3C343.1 NGC6240 1709-342 1710-269 1713+218 1714-336 \ 1722+401 1729-373 1741-312 SGR-A 1742-283 1744-299 1752-217 1756-663 \ 1801+010 1805-214 1813-241 1817+512 1827-360 1848+333 NAQL93 1920+154 \ 1921+14B 1934+207 2027+383 NGC6946 2101-715 2134-470 2209+184 2212-299 \ 2226-411 2227-210 2310-417 2314+038 2317-372 2318-195 2332-531 \ * * 8 radio stars * HD32918 HD132742 SIGCRB HR1099 UXARI LSI61303 LANA SN1993J * APPENDIX C. ----------- Stations for which troposphere gradients were not estimated: None. APPENDIX D. ----------- Stations for which axis offsets were estimated as global parameters: AXIS NO EXCEPT \ AIRA ALGOPARK BR-VLBA CHICHI10 DSS15 \ DSS45 DSS65 FD-VLBA FORTLEZA GBT-VLBA \ GGAO7108 GIFU11 GILCREEK GOLDVENU HARTRAO \ HATCREEK HAYSTACK HN-VLBA HRAS_085 KASHIM11 \ KASHIM34 KASHIMA KAUAI KOGANEI KOKEE \ KP-VLBA LA-VLBA MARPOINT MATERA MIAMI20 \ MIURA MIZNAO10 MK-VLBA MOJAVE12 NL-VLBA \ NOTO NRAO_140 NRAO20 NRAO85_1 NRAO85_3 \ OHIGGINS OV-VLBA OVRO_130 PIETOWN RICHMOND \ SANTIA12 SC-VLBA SESHAN25 SINTOTU3 SVETLOE \ TATEYAMA TIGOCONC TIGOWTZL TOMAKO11 TSUKUB32 \ URUMQI VNDNBERG WESTFORD YEBES YLOW7296 \ ZELENCHK BADARY CRIMEA DSS65A EFLSBERG \ HOBART26 MEDICINA NYALES20 ONSALA60 PARKES \ YEBES40M WETTZELL KWAJAL26 METSAHOV SEST \ SYOWA TIDBIN64 DSS13 MARCUS TSUKUBA \ VERAISGK VERAMZSW HOBART12 WARK12M YARRA12M \ KATH12M KUNMING UCHINOUR \ **NB** HART15M APPENDIX E. ----------- Stations with constraints on velocity: VELOCITIES XYZ NO UEN NO SIGMA 0.1 3.0 3.0 EXCEPT \ * AUSTINTX AZORES BADARY BERMUDA BLOOMIND \ BREST CARNUSTY CARROLGA CHLBOLTN CTVASBAY \ CTVASTJ DAITO GRASSE HOFN HOHENFRG \ HOHNBERG KAINAN KANOZAN KARLBURG KIRSBERG \ LEONRDOK MCD_7850 METSHOVI MILESMON NOBEY_6M \ OCOTILLO SAGARA SEST SUWON TIDBIN64 \ TITIJIMA TOMAKO11 TOULOUSE USSURISK VERAIRIK \ VERAISGK VERAOGSW USUDA64 VICTORIA \ **NB** * KUNMING UCHINOUR \ KASHIM11 \ YARRA12M KATH12M WARK12M APPENDIX F. ----------- Velocities of these sets of stations were constrained to be the same: VELOCITY_TIE \ DSS15 DSS13 GOLDMARS \ * AND DSS45 TIDBIN64 \ AND DSS65 DSS65A \ AND ROBLED32 MADRID64 \ AND FORTORDS FORT_ORD \ * AND GIFU11 GIFU3 \ AND GGAO7108 GORF7102 \ AND HARTRAO HART15M \ AND HOBART26 HOBART12 \ * AND KASHIM34 KASHIM11 \ * AND KAUAI HALEAKAL \ AND KOGANEI KOGANEI3 \ AND METSAHOV METSHOVI \ AND MIZNAO10 VERAMZSW \ * AND MOJAVE12 MOJ_7288 \ * AND NRAO20 GBT-VLBA \ * AND NRAO_140 NRAO85_1 \ AND MV2ONSLA ONSALA85 \ * AND OVRO_130 OVR_7853 \ AND RICHMOND MIAMI20 \ * AND SESHAN25 SHANGHAI \ AND SINTOTU SINTOTU3 \ AND TSUKU3 TSUKUBA \ AND VLA VLA-N8 \ AND WETTZELL TIGOWTZL \ AND YEBES YEBES40M * AND YLOW7296 YELLOWKN