Technical description of solution usn2011a 2011 April 1. Purpose of solution: TRF/CRF for session EOP 2. Analysis center: USN ( United States Naval Observatory ) 3. Short narrative description of solution: Solution usn2011a estimates station position and velocity parameters to define the TRF/CRF for computing EOP time series. Source positions are also estimated. The TRF is attached to VTRF2008 by imposing no-net-rotation and no-net-translation conditions for the positions of a subset of stations and, similarly, no-net-rotation and no-net-translation conditions for the velocities of a subset of stations. The CRF is attached to the ICRF by a no-net-rotation condition using the 295 ICRF2 defining sources [1]. Parameters are split into three groups: a) global - parameters estimated over all sessions; b) local - parameters estimated for each 24-hour session; c) segmented - parameters estimated over 60 minute time spans. Positions and velocities of 136 stations were estimated as global parameters. Positions of 650 sources were estimated as global parameters. These 650 sources were considered eligible for estimation as global parameters based on the following criteria: 1) the source had 40 or more good observations; 2) the source was observed during two or more sessions; and 3) the source had N.R.D. less than 1.3 in preliminary solutions. Positions for an additional 713 sources were estimated for each session independently (treated as arc parameters). Finally, 135 sources (APPENDIX B) were excluded from the solution due to bad data or insufficient number of observations (less than 2). Mean site gradients were computed from a GSFC Data Assimilation Office (DAO) model for met data for ICRF2 [1] (icrf2-gd2.mgr). Atmospheric gradient delay is modeled as tau = m_grad(el,az) * [GN*cos(az)+GE*sin(az)], where el and az are the elevation and azimuth of the the observation and the gradient mapping function is m_grad. The gradient vector has east and north components GE and GN. Refer to [2], [3]. 3a. Differences with respect to previous solution: TICOCONC was affected by a large nearby earthquake in Chile on Feb. 27, 2010, and experienced an episodic offset of more than 3 meters, mostly in the westward direction. The motion there since the earthquake has been clearly non-linear, and a single episodic break cannot model the motion properly. Therefore a new user partial program was used to estimate offsets at TIGOCONC for each session after the earthquake. TIGOCONC was removed from the list of stations used for a no-net-rotation, no-net-translation constraint. A new version of Solve was used which directly estimates the X and Y nutation/precession components. The IAU2006 precession model was also applied. These are also converted into the classical nutation offsets, Dpsi and Deps with respect to the IAU200A/2006 precession/nutation models, and then into the older IAU1980/1976 (Wahr) classical nutation offsets. 4. Estimated parameters: a. celestial frame: right ascension, declination (global and local) b. terrestrial frame: X, Y, Z, Xdot, Ydot, Zdot (global) c. Earth Orientation: X-pole, Y-pole, UT1-TAI, Xdot, Ydot, UT1dot, X-nutation, Y-nutation (local parameters). d. zenith troposphere: continuous piece-wise linear; 20 min interval; rate constraint generally 50 ps/hr; NMF wet partial derivative (segmented) e. troposphere gradient: 6 hour east and north piece-wise continuous at all stations except a set of 110 stations (APPENDIX C); offset constraint 0.5 mm, rate constraint 2.0 mm/day (segmented) f. station clocks: quadratic + continuous piece-wise linear with 60 min interval; rate constraint generally 5.0E-14 (segmented) g. baseline clocks: set in initial analysis - usually used (local) h. other: global antenna axis offsets for 61 stations (APPENDIX D) (global) 5. Celestial reference frame: a. a priori source positions: ICRF2 b. source positions adjusted in solution: yes If yes, c. definition of orientation: no-net-rotation tie to the ICRF2 using only ICRF2 defining sources d. source position estimation: 651 global and 394 local 6. Terrestrial reference frame: a. a priori station positions: VTFRF008a b. a priori station velocities: VTRF2008a c. reference epoch for site positions: 1997.0 d. station positions/velocities adjusted in solution: yes If yes, e. definition of origin, orientation, and their time evolution: no-net-translation and no-net-rotation of position with respect to VTRF2008 for 26 stations: ALGOPARK BR-VLBA CRIMEA DSS45 FD-VLBA FORTLEZA HARTRAO HN-VLBA \ HOBART26 KASHIM34 KOKEE KP-VLBA LA-VLBA MATERA MK-VLBA NL-VLBA \ NOTO NYALES20 ONSALA60 OV-VLBA SC-VLBA SESHAN25 SVETLOE \ TSUKUB32 WESTFORD WETTZELL no-net-translation and no-net-rotation of velocity with respect to VTRF2008 for the same 26 stations: ALGOPARK BR-VLBA CRIMEA DSS45 FD-VLBA FORTLEZA HARTRAO HN-VLBA \ HOBART26 KASHIM34 KOKEE KP-VLBA LA-VLBA MATERA MK-VLBA NL-VLBA \ NOTO NYALES20 ONSALA60 OV-VLBA SC-VLBA SESHAN25 SVETLOE \ TSUKUB32 WESTFORD WETTZELL f. station parameter estimation: X, Y, Z, Xdot, Ydot, Zdot globally for all stations, some with constraints g. stations with constraints: A priori velocity of U, E, and N components for the stations listed in APPENDIX E were constrained to the VTRF2008 velocities with reciprocal weights 0.1, 3.0, and 3.0 mm/yr respectively because the stations have too short history of observations, in many cases only one occupation. The velocities of the 23 sets of stations listed in APPENDIX F were constrained to be the same. h. stations with discontinuous positions and date of discontinuity: YAKATAGA 871201 ! Earthquake SOURDOGH 871201 ! Earthquake WHTHORSE 871201 ! Earthquake FORTORDS 891001 ! Earthquake PRESIDIO 891001 ! Earthquake MOJAVE12 920627 ! Earthquake DSS15 920627 ! Earthquake MEDICINA 960601 ! Rail repair EFLSBERG 961001 ! Rail repair DSS65 970415 ! Rail repair MIURA 000701 ! Seismic event TATEYAMA 000701 ! Seismic event GGAO7108 030101 ! Station relocation SINTOTU3 030915 ! h/z TIGOCONC 100227 ! Earthquake i. stations with nonlinear velocities: HRAS_085, GILCREEK, PIETOWN j. relativity scale: G_oo = -(1 - (2W/c^2 + W^2/c^4) + 2L_g ) G_oa = -4W^a/c^3 G_ab = \delta_ab (1 + 2W/c^2 - 2L_g) ) Specifically, the old formula 29 in IERS Conventions 1992, page 127-136. k. permanent tide correction: yes "Yes" means that both the permanent and the periodic tides have been included in the model, so that the output station position is for after the removal of both the permanent and the periodic tidal effect. The model used includes tide displacements for zero frequency with Love numbers h2(freq=0) = 0.6074, l2(freq=0) = 0.0852 7. Earth orientation: a. A priori precession/nutation model: IAU2000A Precession-Nutation, IERS 2003 [6] implementation, modified using the IAU2006 precession model. b. A priori short-period tidal variations in X, Y, UT1 due to short period tidal and nutation effects were applied. These were computed by Calc 10.0, as recommended in the IERS 2003 Conventions [6], chapter 5, p. 5. c. EOP estimation: Two tables are given: usn2011.eoxy: X, Y, UT1, Xdot, Ydot, UT1dot, X-nutation, Y-nutation, each session. Using a priori error of 45 mas for pole and 3 ms for UT1, 45 mas/day and 3 ms/day for pole rate and UT1 rate to allow estimation for one-baseline sessions; X-nutation and Y-nutation are relative to IAU2000A/2006 Nutation/Precession models. Time tag of the EOP series is the middle epoch of the observing session. usn2011.eops: X, Y, UT1, Xdot, Ydot, UT1dot, Deps, Dpsi, each session. Deps and Dpsi are relative to the IAU 1976 precession and IAU 1980 nutation models. {Internally, Calc/Solve estimated offsets to the X and Y precession/nutation quantities, relative to the IAU2000A/2006 nutation/precession models, using the IERS 2003 Conventions [6] implementation and the difference due to the IAU2006 Precession model. These were converted to classical Dpsi and Deps nutation offsets relative to the IAU 2000A nutation model. These were then converted to the IAU 1976/1980 precession/nutation (Wahr) model by adding the following terms: Deps: -25.24*Cent - 6.8192 (m-arc-sec), and Dpsi: -299.65*Cent - 41.775 (m-arc-sec), where Cent is the epoch in fractional centuries since 2000.0 (Julian date 2451545.0). This conversion is not quite correct though. There are some long term drifts that are not accounted for. See reference [7].} High frequency variations in polar motion and UT1, as computed by Calc 10, were added to the a priori EOP during the Solve/Globl solution. The reported values of polar motion and UT1 are the sum of the adjustments and the apriori EOP without contribution due to the high frequency variations. Thus, the final series of polar motion and UT1 do not contain contributions due to high frequency variations. 8. A priori geophysical models: a. troposphere: NMF dry mapping function; Saastamoinen zenith delay calculated using logged pressure, temperature; a priori mean gradients from DAO weather model. b. solid Earth tide: IERS Conventions 1996, p.56-65, step 1 and step 2, anelasticity variant, including tides of the 3-rd order. c. ocean loading: 3D ocean loading displacements computed by SPOTL software by Leonid Petrov. Harmonic model 2007b_oclo.hps d. atmosphere loading: 3D displacements computed by convolving global surface pressure field on 2.5x2.5 degrees grid with 6 hour temporal resolution using the NCEP Reanalysis model by Leonid Petrov. 9. Data type: group delays 10. Data editing: 5 degree elevation cutoff 11. Data weighting. Weights are defined as follows: 1/sqrt ( f**2 + a**2 ) where "f" is formal uncertainty of the ionosphere free linear combination of group delays at X- and S-band obtained by fringe fitting on the base of achieved signal to noise ratio. The station-dependent parameter "a" was computed for each session by an iterative procedure such that the ratio of the sum of squares of weighted residuals to the estimate of their mathematical expectation is about unity. 12. Standard errors reported: all errors derived from least-squares estimation propagated from the data weights and the constraints applied to the estimated parameters. 13. Software: Calc 10.0, SOLVE revision date 2010.05.21. 14. Other information: Mean pole coordinates used for computation of pole tide deformation were set to 0.0, 0.0 References: 1. IERS Technical Note 35, 'The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry'; A.L. Fey, D. Gordon, C.S. Jacobs, editors; 2009. http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn35.html 2. MacMillan, D.S. and C. Ma, Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Lett., 22, 1041-1044, 1995. 3. MacMillan, D.S. and C. Ma, Atmospheric gradients and the VLBI terrestrial and celestial reference frames, Geophys. Res. Lett., 24, 453-456, 1997. 4. Takashima, K., et al., "Status and Results of GSI Domestic VLBI Network", Bulletin of the Geographical survey Institute, Vol. 46, March 2000, p. 1-9. 5. Petrov, L. and J.-P. Boy, "Study of the atmospheric pressure loading signal in VLBI observations", J. Geophys. Res., 10.1029/2003JB002500, vol. 109, No. B03405, 2004. 6. McCarthy, D.D., Petit, G., IERS Technical Note 32, IERS Conventions (2003), 2003. APPENDIX A. ----------- * 651 sources considered eligible for estimation as global parameters * based on the following criteria applied to the preliminary solution: * 1) 40 or more good observations * 2) observed in 3 or more experiments (no time restriction) * 3) have NRD less than 1.3 in preliminary solution * 2358+189 0002-478 0003-066 IIIZW2 0008-264 0010+405 0013-005 0014+813 \ 0016+731 0019+058 0021+243 0035-252 0035+413 0047+023 0047-579 0048-097 \ 0048-427 0059+581 0104-408 0106+013 0107-610 0109+224 0110-668 0110+495 \ 0111+021 0112-017 0115-214 0116-219 0118-272 0119+115 0119+041 0122-514 \ 0130-171 0131-522 0133+476 0134+311 0135-247 0138-097 0146+056 0149+218 \ 0150-334 0151+474 0159+723 0201+113 0202-172 0202+319 0206+136 0208-512 \ 0215+015 0220-349 UG01841 0221+067 4C67.05 0227-369 0230-790 0229+131 \ 0234-301 0235-618 0234+285 0235+164 0237-027 0237+040 0239+175 0239+108 \ 0241+622 0252-549 0256+075 0259+121 0300+470 0302-623 0302+625 NGC1218 \ 0306+102 0308-611 0307+380 0309+411 0317+188 0322+222 0326+278 0332-403 \ 0334-546 NRAO140 0335-364 0338-214 0340+362 0341+158 0342+147 0346-279 \ 0345+460 0347-211 0355-669 NRAO150 0358+040 0358+210 0400-319 0402-362 \ 0403-132 0403-179 0405-385 0405-123 0406-127 0406+121 0409+229 0414-189 \ 0415+398 0420+022 0420-014 0420+417 0422+004 0423+051 0425+048 0426-380 \ 0426+273 0430+289 0434-188 0437-454 0438-436 0440+345 0442+389 0446+112 \ 0454-810 0454-463 0454-234 0457+024 0458-020 0458+138 0459+060 0459+135 \ 0500+019 0503-608 0502+049 0506-612 0454+844 0506+101 0507+179 0508+138 \ 0511-220 0516-621 0515+208 0522-611 0524-460 0524-485 0524+034 0530-727 \ 0528-250 0529+483 0534-611 0534-340 0537-441 0537-158 0536+145 0537-286 \ 0539-057 3C147 0544+273 0549-575 0547+234 0548+378 0549+192 0552+398 \ 0554+242 0556+238 0600+177 0601+245 0602+405 0602+673 0605-085 0606-223 \ 0611+131 0609+607 0613+570 0615+820 0627-199 0629-418 0637-752 0637-337 \ 0636+680 0641+392 3C166 0642+449 0646-306 0648-165 0650+371 0651+410 \ 0654+244 0656+082 0657+172 0700-197 0707+476 0716+714 0722+145 0723-008 \ 0718+793 0725+219 0727-115 0729+259 0733-174 0735+178 0738-674 0736+017 \ 0738+491 0742+103 0743-006 0743+259 0743+277 0745+241 0747+185 0748+126 \ 0749+540 0754+100 0759+183 0800+618 0805+046 0805-077 0804+499 0805+410 \ 0808+019 0812+367 0814+425 0818-128 0822+137 0823+033 0826-373 0827+243 \ 0829+046 0828+493 0831+557 0834-201 0833+585 0836+182 0847-120 OJ287 \ 0854-108 0854+213 0859+470 0906+015 0912+029 0912+297 0917+449 0917+624 \ 0920-397 0920+390 0925-203 0943+105 0949+354 0951+268 0952+179 M81 \ OK290 0955+476 0955+326 0954+658 1004-500 1004-217 1004+141 1011+250 \ 1012+232 1012-448 1013+054 1014+615 1015+359 1016-311 1020+400 1022-665 \ 1022+194 1023+131 1027-186 1030+415 1030+074 1032-199 1034-374 1034-293 \ 1038+52A 3C245 1039+811 1042+071 1045-188 1046-409 1048-313 1049+215 \ 1053+704 1055-301 1053+815 1055+018 1057-797 1056+212 1059+282 1100+122 \ 1101-325 1101-536 1101+384 1104+728 1111+149 1116-462 1116+128 1119+183 \ 1123+264 1124-186 1125+062 1125+366 1127-145 1128+385 1128-047 1129-580 \ 1130+009 1133-032 MRK180 NGC3862 1142+052 1143-696 1143-245 1143-287 \ 1144+402 1144-379 1145-071 1147+245 1148-671 1149-084 1150+812 1155+251 \ 1156-094 1156-663 1156+295 1212+171 1213-172 1213+350 1215+303 1216+487 \ 1219+285 1219+044 1221+809 1222+037 M84 1223-188 1226-028 1226+373 \ 3C274 1236+077 1236-684 1239+376 1240+381 1243-072 1244-255 1245-454 \ 1252+119 1251-713 1254+571 1255-316 1255-177 1257+145 1300+580 1302-102 \ 1306+360 1307+121 1308+328 1308+554 1313-333 OP326 1318+225 1324+224 \ 1325-558 1327+504 1330+476 1331+170 1333-152 1334-127 1338+381 1339-287 \ 1342+662 1342+663 1347+539 1348+308 1349-439 1351-018 1354+195 1354-174 \ 1354-152 1357+769 1402-012 1402+044 OQ208 1406-076 1409+218 1412-368 \ 1413+135 1413+349 1416+067 1418+546 1417+385 1420+326 1420-679 1423+146 \ 1424+366 1424-418 1427+543 1428+422 1428+370 NGC5675 1430-178 1432+200 \ 1433+304 1434+235 1435-218 1441+252 OQ172 1443-162 1445-161 1448-648 \ 1451-400 1454-354 1456+044 1459+480 1502+106 1502+036 1504+377 1504-166 \ 1508+572 1508-055 1510-089 1511-100 1514+197 1514-241 1520+437 1520+319 \ 1519-294 1519-273 1522+155 1532+016 1538+149 1547+507 1546+027 1548+056 \ 1550-242 1549-790 1555+001 1555-140 1554-643 1557+032 1556-245 1600+335 \ 1600-294 1600-445 1602-115 1604-333 1606+106 1608+243 1611+343 1611-710 \ 1614+051 1610-771 1615+029 1616+063 1617+229 1619-680 1623+578 1622-253 \ 1624+416 1624-617 NGC6251 1633+38 1636+473 1637+574 NRAO512 1639+230 \ 1639-062 1642+690 1633-810 1647-296 1651+391 DA426 1656+348 1655+077 \ 1656+053 1656-075 1657-261 1659+399 1657-562 1659-621 1705+018 1705+135 \ 1706-174 1717+178 1726+455 1725+123 1727+502 1725+044 NRAO530 1725-795 \ 1732+389 1738+499 1738+476 1739+522 1741-038 NGC6454 1743+173 1745+624 \ 1749+701 1749+096 1751+288 1754+159 1754+155 1758+388 1803+784 1800+440 \ 1759-396 1758-651 3C371 1806-458 1815-553 1817-254 1823+689 1821+107 \ 1823+568 1824-582 1830+139 1830+285 1831-711 1842+681 1843+400 1846+322 \ 1849+670 1856+736 1901+155 1908-201 1909+161 1903-802 1920-211 1922+155 \ 1921-293 1922-224 1923+210 1925-206 1926+087 1925-610 1928+154 1929+226 \ 1929-457 1932+204 1936+714 1933-400 1936-155 1937-101 1935-692 1943+228 \ 1951+355 1954+513 1954-388 1958-179 2000+472 2000+148 2000-330 2002-375 \ OW-015 2008-159 2013+163 2021+317 2022+171 2029+024 2029+121 3C418 \ 2037-253 CL4 2051+745 2052-474 2054-377 2058-297 2059+034 2059-786 \ 2106+143 2106-413 2113+293 2109-811 2117-614 2123-463 2126-158 2127-096 \ 2128-123 2131-021 2134+00 2136+141 2138-377 2141+175 2143-156 2144+092 \ 2142-758 2149+056 2149-306 2146-783 2150+173 2155+312 2155-152 2155-304 \ 2201+171 2204-540 2205+166 2208-137 2209+236 2210-257 2216-038 2220-351 \ 2223+210 3C446 2227-088 2229+695 2227-399 CTA102 2232-488 2233-148 \ 2235+731 2236-572 2243+047 2244-372 2245-328 2250+194 3C454.3 2252-089 \ 2253+417 2254+074 2254+024 2255-282 2300-683 2302+232 2306-312 2309+454 \ 2312-319 2314-340 2318+049 2319+317 2319+272 2319+444 2320-035 2321-375 \ 2325-150 2326-477 2328+107 2329-384 2331-240 2333-415 2335-027 2344+09A \ 2344-514 2345-167 2351-309 2351+456 2351-154 2353-686 2353+816 2355-534 \ 2355-106 2356+385 2357-318 APPENDIX B. ----------- Sources whose data was not used: * * 7 Gravitational lenses with equal components * 0218+357 0218+35A 0218+35B 1422+231 1830-211 1830-21A 1830-21B \ * * 120 sources with less than 3 (0,1,2) observations in crf2011a_00 * 0000-160 UG00192 4C+00.02 OB338 0036-216 0045-255 NGC0253 0106+130 \ 0127+145 0131-450 0131-367 0201-440 M77 0250+178 0253-218 NGC1167 \ UXARI 0340+044 0420-625 0428+205 0434+299 HD32918 0515-674 0512+249 \ 0514+109 0537-692 0535+677 NGC2110 0558-504 0611+139 MRK003 NGC2146 \ 0629+104 0731-465 0802-276 0809+483 0817+472 0830+115 4C+32.26 0844+387 \ 0858-279 0902+343 0937-282 0941-080 M82 0951+699 NGC3079 1015-314 \ 1017+109 1020-103 1020+191 1026-179 1039-474 1045+155 1046-026 1055-242 \ 1117-248 NGC3690 M106 1225-023 1224-854 1239-044 1243-412 1245-197 \ 1305-241 1313+200 NGC5077 1320-407 1329-665 1331+512 1421-490 1422+268 \ TON202 1439+327 HD132742 1511+238 1528-274 1528-509 SIGCRB 1622+238 \ 1623-243 3C343 3C343.1 NGC6240 1709-342 1710-269 1713+218 1714-336 \ 1722+401 1729-373 1741-312 SGR-A 1742-283 1744-299 1752-217 1756-663 \ 1801+010 1805-214 1813-241 1817+512 1820-274 1827-360 1829-106 1848+333 \ NAQL93 1920+154 1921+14B 1934+207 2027+383 NGC6946 2101-715 2134-470 \ 2209+184 2212-299 2226-411 2310-417 2314+038 2317-372 2318-195 2332-531 \ * * 8 radio stars * HD32918 HD132742 SIGCRB HR1099 UXARI LSI61303 LANA SN1993J * APPENDIX C. ----------- Stations for which troposphere gradients were not estimated: GRADIENTS YES 6 EXCEPT NO \ AIRA AUSTINTX AZORES BERMUDA BLKBUTTE \ BLOOMIND BREST CARNUSTY CARROLGA CHICHI10 \ CHLBOLTN CTVASBAY CTVASTJ DAITO DEADMANL \ DSS15 ELY FLAGSTAF FORTORDS FORT_ORD \ FTD_7900 GBT-VLBA GGAO7108 GIFU11 GIFU3 \ GOLDVENU GORF7102 GRASSE HALEAKAL HOFN \ HOHENFRG HOHNBERG JPL_MV1 KAINAN KANOZAN \ KARLBURG KASHIM11 KIRSBERG KODIAK KOGANEI \ KOGANEI3 KWAJAL26 LEONRDOK MAMMOTHL MARCUS \ MARPOINT MCD_7850 METSAHOV METSHOVI MIAMI20 \ MILESMON MIURA MIYAZAKI MIZNAO10 MIZUSGSI \ MOJ_7288 MON_PEAK MV2ONSLA NOBEY_6M NOME \ NRAO85_1 OCOTILLO OHIGGINS ONSALA85 OVR_7853 \ PARKES PBLOSSOM PENTICTN PINFLATS PLATTVIL \ PRESIDIO PT_REYES PVERDES QUINCY ROBLED32 \ SAGARA SANPAULA SEATTLE1 SESHAN25 SEST \ SHANGHAI SINTOTU SINTOTU3 SNDPOINT SOURDOGH \ SUWON SYOWA TATEYAMA TITIJIMA TOMAKO11 \ TOULOUSE TROMSONO TRYSILNO TIDBIN64 TIGOWTZL \ TSUKUBA TSUKU3 URUMQI USSURISK USUDA64 \ VERNAL VICTORIA VLA VLA-N8 WHTHORSE \ YAKATAGA YEBES YELLOWKN YLOW7296 YUMA APPENDIX D. ----------- Stations for which axis offsets were estimated as global parameters: AXIS NO EXCEPT \ AIRA ALGOPARK BR-VLBA CHICHI10 DSS15 \ DSS45 DSS65 FD-VLBA FORTLEZA GBT-VLBA \ GGAO7108 GIFU11 GILCREEK GOLDVENU HARTRAO \ HATCREEK HAYSTACK HN-VLBA HRAS_085 KASHIM11 \ KASHIM34 KASHIMA KAUAI KOGANEI KOKEE \ KP-VLBA LA-VLBA MARPOINT MATERA MIAMI20 \ MIURA MIZNAO10 MK-VLBA MOJAVE12 NL-VLBA \ NOTO NRAO_140 NRAO20 NRAO85_1 NRAO85_3 \ OHIGGINS OV-VLBA OVRO_130 PIETOWN RICHMOND \ SANTIA12 SC-VLBA SESHAN25 SINTOTU3 SVETLOE \ TATEYAMA TIGOWTZL TOMAKO11 TSUKUB32 \ URUMQI VNDNBERG WESTFORD YEBES YLOW7296 \ VERAIRIK VERAISGK VERAMZSW VERAOGSW \ ZELENCHK BADARY CRIMEA DSS65A EFLSBERG \ HOBART26 MEDICINA NYALES20 ONSALA60 PARKES \ YEBES40M WETTZELL APPENDIX E. ----------- Stations with constraints on velocity: VELOCITIES XYZ NO \ UEN NO SIGMA 0.1 3.0 3.0 EXCEPT \ AUSTINTX AZORES BADARY BERMUDA BLOOMIND \ BREST CARNUSTY CARROLGA CHLBOLTN CTVASBAY \ CTVASTJ DAITO GRASSE HOFN HOHENFRG \ HOHNBERG KAINAN KANOZAN KARLBURG KIRSBERG \ LEONRDOK MCD_7850 METSHOVI MILESMON NOBEY_6M \ OCOTILLO SAGARA SEST SUWON TIDBIN64 \ TITIJIMA TOMAKO11 TOULOUSE USSURISK VERAIRIK \ VERAISGK VERAOGSW USUDA64 VICTORIA APPENDIX F. ----------- Velocities of these sets of stations were constrained to be the same: VELOCITY_TIE \ DSS15 DSS13 GOLDMARS \ AND DSS45 TIDBIN64 \ AND DSS65 DSS65A ROBLED32 MADRID64 \ AND FORTORDS FORT_ORD FTD_7900 \ AND GIFU11 GIFU3 \ AND GGAO7108 GORF7102 \ AND KASHIM34 KASHIM11 \ AND KAUAI HALEAKAL \ AND KOGANEI KOGANEI3 \ AND METSAHOV METSHOVI \ AND MIZNAO10 MIZUSGSI VERAMZSW \ AND MOJAVE12 MOJ_7288 \ AND NRAO20 GBT-VLBA \ AND NRAO_140 NRAO85_1 \ AND ONSALA60 MV2ONSLA ONSALA85 \ AND OVRO_130 OVR_7853 \ AND RICHMOND MIAMI20 \ AND SESHAN25 SHANGHAI \ AND SINTOTU SINTOTU3 \ AND TSUKUB32 TSUKU3 TSUKUBA \ AND PIETOWN VLA VLA-N8 \ AND WETTZELL TIGOWTZL \ AND YLOW7296 YELLOWKN