Technical description of session EOP solution gsfint20 1. Purpose of solution: determination of UT1 from short, 1.0 -- 1.5 hours, NEOS Intensive VLBI sessions 2. Analysis center: GSF ( NASA Goddard Space Flight Center ) 3. Short narrative description of solution: Solution gsfint20 is for estimation of UT1 from 1.5 hours NEOS Intensive experiments. Each experiment consists of 12-20 observation on one baseline: NRAO20/WETTZELL before 2000.07.02 and KOKEE/WETTZELL after that date. The TSUKUB32-WETTZELL intensives are now included in the intensive series. Each session was processed independently. Solution includes all Intensive experiments from 1991.10.01 till 2006.03.17, in total 3636 sessions. 4. Estimated parameters: -- UT1 angle; -- atmopshere path delay offset at each station; -- coefficients of the second order polynomials of clock function. 5. Celestial reference frame: a. a priori source positions: 2007b_apr.src catalogue. This catalogue was created in the 2007a_astro solution. However, positions of 212 ICRF defining sources were replaced with the values taken from the ICRF catalogue. b. source positions adjusted in solution: no 6 - Terrestrial reference frame: a. a priori station positions: int20_apr.sit . This catalogue was created in the gsf2007b solution. b. a priori station velocities: int20_apr.vel . This catalogue was created in the gsf2007b solution. c. reference epoch: 1997.0 d. station positions/velocities adjusted in solution: no j. relativity scale: the terrestrial reference frame is defined with using the following metric tensor: G_oo = -(1 - (2W/c^2 + W^2/c^4) + 2L_g ) G_oa = -4W^a/c^3 G_ab = \delta_ab (1 + 2W/c^2 - 2L_g) ) Specifically the old formula 29 in IERS Conventions 1992, page 127-136 was used, although it is known to have a deficiency. THIS METRIC TENSOR DOES NOT CONFORM IAU 2000 RESOLUTIONS! k. permanent tide correction: yes "Yes" means that both the permanent and the periodic tides have been modeled, so that the output station position is for after the removal of both the permanent and the periodic tidal effect. The model used includes tide displacements for zero frequency with Love numbers h2(freq=0) = 0.6074, l2(freq=0) = 0.0852 7. Earth orientation: a. a priori precession model: Capitaine 2003. b. a priori nutation model: MHB 2000 c. a priori short-period tidal variations in x, y, UT1 were taken into account in accordance with the model presneted in Appendix A. d. EOP estimation: UT1 (without any constraints) e. a priori UT1 and polar motion usno_finals.data http://gemini.gsfc.nasa.gov/solve_save/usno_finals.erp obtained by adding small linear shift and drift to the left columns of original finals.data file generated by USNO ftp://maia.usno.navy.mil/ser7/finals.data by such a manner that there is no shift and secular drift with respect to gsf2005e.eops series over period 2000.1 -- now 8. A priori geophysical models: a. troposphere: NMF dry mapping function; Saastamoinen zenith delay calculated using logged pressure, temperature; a priori mean gradients from VLBI data or DAO weather model b. solid Earth tide: IERS Conventions 1996, p.56-65, step 1 and step 2, anelasticity variant, including tides of the 3-rd order. c. ocean loading: 3D ocean loading displacements computed by SPOTL software. The model of displacements caused by ocean loading contains 18 constituents. The following ocean tide models were used: Harmonic Frequency rad/sec Model k2-a 1.324501D+00 1.458530140651D-04 GOT00 admittance k2 3.506941D+00 1.458423171028D-04 GOT00 s2 6.283185D+00 1.454441043329D-04 GOT00 s2-a 4.312500D-02 1.452450074576D-04 GOT00 admittance m2 2.169437D+00 1.405189027044D-04 GOT00 m2-a 1.210284D+00 1.405082057420D-04 GOT00 admittance n2 6.097067D+00 1.378796996516D-04 GOT00 k1-a 1.141827D+00 7.293185551375D-05 GOT00 admittance k1 3.324267D+00 7.292115855138D-05 GOT00 k1-b 2.365113D+00 7.291046158901D-05 GOT00 admittance p1 2.958919D+00 7.252294578148D-05 GOT00 p1-a 3.002044D+00 7.232384890619D-05 GOT00 admittance o1 5.128356D+00 6.759774415297D-05 GOT00 o1-a 1.027610D+00 6.758704719061D-05 GOT00 admittance q1 2.772800D+00 6.495854110023D-05 GOT00 q1-a 4.955240D+00 6.494784413786D-05 GOT00 admittance mtm-a 4.652212D+00 7.973314413516D-06 NAO99.l admittance mtm 5.514660D-01 7.962617451151D-06 NAO99.l mf-a 2.296657D+00 5.334111360775D-06 NAO99.l admittance mf 4.479096D+00 5.323414398410D-06 NAO99.l msf 9.721550D-01 4.925201628510D-06 NAO99.l mm 5.497148D+00 2.639203052741D-06 NAO99.l msm 4.899785D+00 2.285998575769D-06 NAO99.l ssa 3.653480D-01 3.982127698995D-07 NAO99.l paw 5.012885D+00 1.991063797295D-07 equilibrium sa 3.098467D+00 1.990968752920D-07 NAO99.l pcw 2.003605D+00 1.671771314171D-07 equilibrium 18.6 4.100746D+00 1.069696236521D-08 equilibrium d. atmosphere loading: 3D displacements computed by convolving global surface pressure field on 2.5x2.5 degrees grid with 6 hour temporal resolution using the NCEP Reanalysis model [3]. e. Mean site gradients were computed from GSFC Data Assimilation Office (DAO) model for met data from 1990-95. Atmospheric gradient delay is modeled as tau = m_grad(el) * [GN*cos(az)+GE*sin(az)], where el and az are the elevation and azimuth of the the observation and the gradient mapping function is m_grad. The gradient vector has east and north components GE and GN. Refer to [1], [2]. 9. Data type: group delays 10. Data editing: manual, elevation cutoff 5 degrees. 11. Data weighting. Weights are defined as follows: 1/sqrt ( f**2 + a**2 ) where "f" is formal uncertainty of the ionosphere free linear combination of group delays at X- and S-band obtained by fringe fitting on the base of achieved signal to noise ratio. Session-dependent parameter "a" was computed for each session by an iterative procedure such that the ratio of the sum of squares of weighted residuals to the estimate of their mathematical expectation is about unity. 12. Standard errors reported: all errors derived from least-squares estimation propagated from the data weights and the constraints applied to troposphere, clock and EOP parameters. 13 Software: CALC 10.0, SOLVE revision date 2006.12.08 14. Other information: Mean pole coordinates used for computation of pole tide deformation were set to 0. References: 1. MacMillan, D.S. and C. Ma, Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Lett., 22, 1041-1044, 1995. 2. MacMillan, D.S. and C. Ma, Atmospheric gradients and the VLBI terrestrial and celestial reference frames, Geophys. Res. Lett., 24, 453-456, 1997. 3. Petrov, L. and J.-P. Boy, "Study of the atmospheric pressure loading signal in VLBI observations", J. Geophys. Res., 10.1029/2003JB002500, vol. 109, No. B03405, 2004. 28-DEC-2006 17:41:49 ---------------------------------------------------------------------------- Appendix A. ~~~~~~~~~~~ Expansion of short-period variations in polar motion and UT1. UT1 tidal terms (microseconds) l l' F D Om GST | Cos | Sin | +pi | | | ----------------------------------------- 2 0 2 0 2 -1 -.13 -1.24 0 0 2 2 2 -1 .19 -.82 1 0 2 0 1 -1 -.50 -.92 1 0 2 0 2 -1 -2.64 -4.90 -1 0 2 2 2 -1 -1.10 -.77 0 0 2 0 1 -1 -2.51 -3.34 0 0 2 0 2 -1 -13.31 -17.72 -1 0 2 0 2 -1 .34 .63 1 0 0 0 0 -1 .48 .77 0 1 2 -2 2 -1 -.21 -.43 0 0 2 -2 2 -1 -3.20 -5.32 0 1 0 0 0 -1 .50 1.89 0 0 0 0 -1 -1 -.19 -.33 0 0 0 0 0 -1 9.83 16.45 0 0 0 0 1 -1 1.33 2.23 0 -1 0 0 0 -1 -.17 .41 0 0 -2 2 -2 -1 .08 -.04 -1 0 0 0 0 -1 .13 1.25 0 0 -2 0 -2 -1 .68 .33 0 0 -2 0 -1 -1 .44 .21 -1 0 -2 0 -2 -1 .18 .75 -1 0 -2 0 -1 -1 .12 .48 2 0 2 0 2 -2 -.30 .61 0 0 2 2 2 -2 -.83 .47 1 0 2 0 2 -2 -1.94 3.13 -1 0 2 2 2 -2 -.19 .67 0 0 2 0 1 -2 .37 -.57 0 0 2 0 2 -2 -9.88 15.37 -1 0 2 0 2 -2 .12 -.34 0 1 2 -2 2 -2 -.06 .17 0 0 2 -2 2 -2 -1.25 7.73 0 1 0 0 0 -2 .24 .27 0 0 0 0 0 -2 .28 2.48 0 0 0 0 1 -2 .08 .74 0 0 3 0 3 -3 .24 .03 0 0 0 4 1 -1 .26 .10 1 0 4 -2 2 -1 .43 -.52 0 0 0 1 0 -1 -.29 -.23 3 -1 2 0 2 -2 .14 .00 1 1 2 0 1 -2 -.26 -.40 0 0 0 -2 2 -2 .23 .09 ----------------------------------------- Polar motion tidal terms (microarcseconds) l l' F D Om GST | Cos | Sin | +pi | | | ----------------------------------------- -2 0 -2 0 -2 1 -6.90 5.52 0 0 -2 -2 -2 1 -8.63 3.00 -1 0 -2 0 -1 1 -5.58 1.48 -1 0 -2 0 -2 1 -29.56 7.83 1 0 -2 -2 -2 1 -7.86 3.64 0 0 -2 0 -1 1 -25.03 8.53 0 0 -2 0 -2 1 -132.70 45.21 1 0 -2 0 -2 1 2.59 .60 -1 0 0 0 0 1 3.26 -8.76 0 -1 -2 2 -2 1 1.25 9.68 0 0 -2 2 -2 1 -49.40 19.23 0 -1 0 0 0 1 25.06 6.71 0 0 0 0 1 1 -3.09 1.76 0 0 0 0 0 1 156.21 -88.75 0 0 0 0 -1 1 21.18 -12.04 0 1 0 0 0 1 4.99 .50 0 0 2 -2 2 1 3.25 2.62 1 0 0 0 0 1 .51 -4.99 0 0 2 0 2 1 5.93 -10.38 0 0 2 0 1 1 3.80 -6.65 1 0 2 0 2 1 .46 .59 1 0 2 0 1 1 .30 .37 -2 0 -2 0 -2 2 4.13 -.28 0 0 -2 -2 -2 2 -1.37 .40 -1 0 -2 0 -2 2 10.48 -12.69 1 0 -2 -2 -2 2 4.33 1.81 0 0 -2 0 -1 2 -1.06 2.12 0 0 -2 0 -2 2 28.34 -56.83 1 0 -2 0 -2 2 1.92 .54 0 -1 -2 2 -2 2 5.42 -4.28 0 0 -2 2 -2 2 -.48 -20.16 0 -1 0 0 0 2 2.61 1.85 0 0 0 0 0 2 -.83 -18.26 0 0 0 0 -1 2 -.25 -5.44 0 0 -3 0 -3 3 1.92 -1.16 0 0 0 -4 -1 1 5.23 -1.47 -1 0 -4 2 -2 1 -1.28 -3.62 0 0 0 -1 0 1 2.33 -2.61 -3 1 -2 0 -2 2 -.88 -1.13 -1 -1 -2 0 -1 2 .24 .00 0 0 0 2 -2 2 .05 -1.31 2 0 2 0 2 -2 2.33 7.19 0 0 2 2 2 -2 2.87 7.66 1 0 2 0 2 -2 .59 43.62 -1 0 2 2 2 -2 -3.07 8.30 0 0 2 0 1 -2 .50 -9.59 0 0 2 0 2 -2 -13.37 257.07 -1 0 2 0 2 -2 1.83 -7.67 0 1 2 -2 2 -2 -7.08 .33 0 0 2 -2 2 -2 -72.53 106.95 0 1 0 0 0 -2 .34 -4.29 0 0 0 0 0 -2 -18.74 12.64 0 0 0 0 1 -2 -5.59 3.77 0 0 3 0 3 -3 -.56 -1.57 3 -1 2 0 2 -2 -.98 4.60 1 1 2 0 1 -2 -.62 4.28 0 0 0 -2 2 -2 -.83 2.72 -----------------------------------------